Confirmation Candles Indicator For ThinkorSwim

Here's a SCAN code for when price crosses the "YHextLineOB / OS line

Code:
#C3_Max_v2 Created by Christopher84 12/14/2021
# Based off of the Confirmation Candles Study. Main difference is that CC Candles weigh factors of positive
# and negative price movement to create the Consensus_Level. The Consensus_Level is considered positive if
# above zero and negative if below zero.

declare upper;

input price = CLOSE;
input ShortLength1 = 5;
input ShortLength2 = 14;
input ShortLength3 = 5;
input LongLength1 = 12;
input LongLength2 = 55;
input LongLength3 = 7;
input coloredCandlesOn = yes;

# Momentum Oscillators

def MS = Average(Average(price, ShortLength1) - Average(price, ShortLength2), ShortLength3);
def MS2 = Average(Average(price, LongLength1) - Average(price, LongLength2), LongLength3);
# Wave A
####################################################################################################################################################



#--------------
#Squeeze Alert
#--------------

#Squeeze Dots Created 04/28/2021 by Christopher84
input ATRPeriod = 5;
input ATRFactor = 2.0;
def HiLo = Min(high - low, 1.5 * Average(high - low, ATRPeriod));
def HRef = if low <= high[1]
    then high - close[1]
    else (high - close[1]) - 0.5 * (low - high[1]);
def LRef = if high >= low[1]
    then close[1] - low
    else (close[1] - low) - 0.5 * (low[1] - high);
input trailType = {default modified, unmodified};
def trueRange;
switch (trailType) {
case modified:
    trueRange = Max(HiLo, Max(HRef, LRef));
case unmodified:
    trueRange = TrueRange(high, close, low);
}
input averageType = AverageType.SIMPLE;
input firstTrade = {default long, short};
#input averageType = AverageType.WILDERS;####Use Simple instead of Wilders
def loss = ATRFactor * MovingAverage(averageType, trueRange, ATRPeriod);
def state = {default init, long, short};
def trail;
switch (state[1]) {
case init:
    if (!IsNaN(loss)) {
        switch (firstTrade) {
        case long:
            state = state.long;
            trail =  close - loss;
        case short:
            state = state.short;
            trail = close + loss;
    }
    } else {
        state = state.init;
        trail = Double.NaN;
    }
case long:
    if (close > trail[1]) {
        state = state.long;
        trail = Max(trail[1], close - loss);
    } else {
        state = state.short;
        trail = close + loss;
    }
case short:
    if (close < trail[1]) {
        state = state.short;
        trail = Min(trail[1], close + loss);
    } else {
        state = state.long;
        trail =  close - loss;
    }
}

def TrailingStop = trail;
def H = Highest(TrailingStop, 12);
def L = Lowest(TrailingStop, 12);
def BulgeLengthPrice = 100;
def SqueezeLengthPrice = 100;
def BandwidthC3 = (H - L);
def IntermResistance2 = Highest(BandwidthC3, BulgeLengthPrice);
def IntermSupport2 = Lowest(BandwidthC3, SqueezeLengthPrice);
def sqzTrigger = BandwidthC3 <= IntermSupport2;
def sqzLevel = if !sqzTrigger[1] and sqzTrigger then hl2
               else if !sqzTrigger then Double.NaN
               else sqzLevel[1];



#-----------------------------
#Yellow Candle_height (OB_OS)
#-----------------------------
def displace = 0;
def factorK2 = 3.25;
def lengthK2 = 20;
def price1 = open;
def trueRangeAverageType = AverageType.SIMPLE;
def ATR_length = 15;
def SMA_lengthS = 6;
input ATRPeriod2 = 5;
input ATRFactor2 = 1.5;
#input averageType = AverageType.WILDERS;####Use Simple instead of Wilders
def HiLo2 = Min(high - low, 1.5 * Average(high - low, ATRPeriod));
def HRef2 = if low <= high[1]
    then high - close[1]
    else (high - close[1]) - 0.5 * (low - high[1]);
def LRef2 = if high >= low[1]
    then close[1] - low
    else (close[1] - low) - 0.5 * (low[1] - high);
def loss2 = ATRFactor2 * MovingAverage(averageType, trueRange, ATRPeriod2);

def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def shiftK2 = factorK2 * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK2);
def averageK2 = MovingAverage(averageType, price, lengthK2);
def AvgK2 = averageK2[-displace];
def Upper_BandK2 = averageK2[-displace] + shiftK2[-displace];
def Lower_BandK2 = averageK2[-displace] - shiftK2[-displace];

def condition_BandRevDn = (Upper_BandS > Upper_BandK2);
def condition_BandRevUp = (Lower_BandS < Lower_BandK2);

def Consensus_Level_OB = 14;
def Consensus_Level_OS = -12;


input use_line_limits = yes;#Yes, plots line from/to; No, plot line across entire chart
input linefrom = 100;#Hint linefrom: limits how far line plots in candle area
input lineto   = 12;#Hint lineto: limits how far into expansion the line will plot

def YHOB = if coloredCandlesOn and ((price1 > Upper_BandS) and (condition_BandRevDn)) then high else Double.NaN;
def YHOS = if coloredCandlesOn and ((price1 < Lower_BandS) and (condition_BandRevUp)) then high else Double.NaN;

def YLOB = if coloredCandlesOn and ((price1 > Upper_BandS) and (condition_BandRevDn)) then low else Double.NaN;
def YLOS = if coloredCandlesOn and ((price1 < Lower_BandS) and (condition_BandRevUp)) then low else Double.NaN;

#extend midline of yellow candle
def YCOB = if !IsNaN(YHOB) then hl2 else Double.NaN;

def YHextOB = if IsNaN(YCOB) then YHextOB[1] else YCOB;
def YHextlineOB = YHextOB;


def YCOS = if !IsNaN(YHOS) then hl2 else Double.NaN;

def YHextOS = if IsNaN(YCOS) then YHextOS[1] else YCOS;
def YHextlineOS = YHextOS;


plot scan = if close crosses YHextlineOB within 1 bar then 1 else if close crosses YHextlineOS within 1 bar then -1 else 0;

CnjwAwz.png
 

Join useThinkScript to post your question to a community of 21,000+ developers and traders.

I was studying the indicators over the weekend. Christopher pointed out that OB/OS zones wrap around price when it is trending in that direction. I notice that when the OB/OS zones do not move on the 3 min, it's likely to reverse. I enter trades on the higher time frames, looking at the weekly and daily. TGT triggered short when price passed Friday's low at 206.8. I looked at the 3 min chart and the zone did not move although the price kept dropping. I exited my trade and watched as the next 3 min candle came right back up. I'm trying to learn to minimize my losses instead of always focusing on how much I can make. This indicator really saved me. Thanks, Christopher!

Of course, you cannot win them all. BAC triggered long when it passed Friday's high at 41.38 but I didn't take it. I was watching the price action. The OB zone didn't immediately move so I would have exited only for the price to keep moving up. But maybe because today's price action is not very strong.
 
Nice short call followed by price being band wrapped by the OS zone. Strategy still holding up in this choppy market.
BUl6r3z.png
great job christopher. a quick question how can i get the later version of your amazing indicator.. the one you show us on youtube. thank you very much and keep up the good work.
 
Nice short call followed by price being band wrapped by the OS zone. Strategy still holding up in this choppy market.
BUl6r3z.png
@Christopher84 Thanks for your generous sharing. Previously, you created another version for those who trade FOREX and SPX, may I know if we can use the latest version C3_Max_v2 to use it on SPX.

For the lower indicator used abv, how do you apply that indicator to the current system?

Thanks
 
@Christopher84 Thanks for your generous sharing. Previously, you created another version for those who trade FOREX and SPX, may I know if we can use the latest version C3_Max_v2 to use it on SPX.

For the lower indicator used abv, how do you apply that indicator to the current system?

Thanks
Hi @8Nick8!
I just posted the code for C3_Max_v2 SPX_Forex on pg.1 of the thread. Hope you find it helpful! The lower indicator is a divergence indicator that I created called EMAD. It helps assess overall trend as well as potential reversals where price divergence from the ema is high (compared to its history). I have been considering releasing EMAD soon (if there's an interest in the study). I personally have found it very useful at times, in helping to anticipate where pullbacks may occur.
 
Last edited:
Hi @8Nick8!
I just posted the code for C3_Max_v2 SPX_Forex on pg.1 of the thread. Hope you find it helpful! The lower indicator is a divergence indicator that I created called EMAD. It helps assess overall trend as well as potential reversals where price divergence from the ema is high (compared to its history). I have been considering releasing EMAD soon (if there's an interest in the study). I personally have found it very useful at times, in helping to anticipate where pullbacks may occur.
Definitely interested in the EMAD. Was going to ask you about it, but glad to see you might release it soon. Looks promising from the chart, especially when divergences in price are confirmed. Thanks!
 
Hi rfb! The candles will still paint correctly for SPX, however, the signals and lower study will not show unfortunately. Thank you for trying it out and for your feedback!
Hi Everyone!
I have been working on an Idea I am calling confirmation candles. I often times find myself trying to find agreement among the numerous indicators that I use to help guide my decisions. Unfortunately, a lot of the time this creates indicator overload and analysis paralysis. So I have included 15 indicators of trend within this indicator. You can choose how many of the 15 indicators have to be in agreement in order to confirm the trend. I may have gone a bit overboard here, however it makes it adaptable to individual risk tolerance and trading style.

***Please note that I will always post the newest version of these indicators on page 1 of this thread. I am always happy to answer questions for those who are trying to utilize these indicators. However, I ask that you review my post below explaining the various aspects of the indicators. I'll do my best to continue to elaborate to help everyone.

Here is the newest code for C3_Max! Happy trading!!!
iMuHkuC.png


Code:
#C3_Max_v2 Created by Christopher84 12/14/2021
# Based off of the Confirmation Candles Study. Main difference is that CC Candles weigh factors of positive
# and negative price movement to create the Consensus_Level. The Consensus_Level is considered positive if
# above zero and negative if below zero.

declare upper;

input price = CLOSE;
input ShortLength1 = 5;
input ShortLength2 = 14;
input ShortLength3 = 5;
input LongLength1 = 12;
input LongLength2 = 55;
input LongLength3 = 7;
input coloredCandlesOn = yes;

# Momentum Oscillators

def MS = Average(Average(price, ShortLength1) - Average(price, ShortLength2), ShortLength3);
def MS2 = Average(Average(price, LongLength1) - Average(price, LongLength2), LongLength3);
# Wave A
def MSGreens = If (MS >= 0, MS, 0);
def MSReds = If (MS < 0, MS, 0);
# Wave C
def MS2Blues = If (MS2 >= 0, MS2, 0);
def MS2Yellows = If (MS2 < 0, MS2, 0);

def MayhemBullish = MSGreens > MSGreens[1] and  MS2Blues > MS2Blues[1];
def MayhemBearish =  MSReds < MSReds[1] and  MS2Yellows < MS2Yellows[1];

def MS_Pos = MSGreens;
def MS_Neg = MSReds;
def MS2_Pos = MS2Blues;
def MS2_Neg = MS2Yellows;

# Squeeze Indicator
def length = 20;
def nK = 1.5;
def nBB = 2.0;

def BBHalfWidth = StDev(price, length);
def KCHalfWidth = nK * Average(TrueRange(high,  close,  low),  length);
def isSqueezed = nBB * BBHalfWidth / KCHalfWidth < 1;

def BBS_Ind = If(isSqueezed, 0, Double.NaN);

# Bollinger Resolution
def BBSMA = Average(price, length);
def BBSMAL = BBSMA + (-nBB * BBHalfWidth);
def BBSMAU = BBSMA + (nBB * BBHalfWidth);
def PerB = RoundUp((price - BBSMAL) / (BBSMAU - BBSMAL) * 100, 0);
AddLabel(yes, Concat("%B: ", PerB), if PerB < 0 then Color.YELLOW else if PerB > 0 and PerB[1] < 0 then Color.GREEN else Color.WHITE);

# Parabolic SAR Signal
def accelerationFactor = 0.0275;
def accelerationLimit = 0.2;

def SAR = ParabolicSAR(accelerationFactor = accelerationFactor, accelerationLimit = accelerationLimit);
def bearishCross = Crosses(SAR, price, CrossingDirection.ABOVE);

plot signalDown = bearishCross;#If(bearishCross, 0, Double.NaN);
signalDown.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);
signalDown.SetLineWeight(3);
signalDown.AssignValueColor(Color.DOWNTICK);

def bullishCross = Crosses(SAR, price, CrossingDirection.BELOW);

plot signalUp =  bullishCross;#If(bullishCross, 0, Double.NaN);
signalUp.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);
signalUp.SetLineWeight(3);
signalUp.AssignValueColor(Color.UPTICK);

def UP = bullishCross;
def DOWN = bearishCross;
def priceColor = if UP then 1
                 else if DOWN then -1
                 else priceColor[1];

####################################################################################################################################################

#OB_OS_Levels_v5

def BarsUsedForRange = 2;
def BarsRequiredToRemainInRange = 2;
def TargetMultiple = 0.5;
def ColorPrice = yes;
def HideTargets = no;
def HideBalance = no;
def HideBoxLines = no;
def HideCloud = no;
def HideLabels = no;

#--------------
#Squeeze Alert
#--------------

#Squeeze Dots Created 04/28/2021 by Christopher84
input ATRPeriod = 5;
input ATRFactor = 2.0;
def HiLo = Min(high - low, 1.5 * Average(high - low, ATRPeriod));
def HRef = if low <= high[1]
    then high - close[1]
    else (high - close[1]) - 0.5 * (low - high[1]);
def LRef = if high >= low[1]
    then close[1] - low
    else (close[1] - low) - 0.5 * (low[1] - high);
input trailType = {default modified, unmodified};
def trueRange;
switch (trailType) {
case modified:
    trueRange = Max(HiLo, Max(HRef, LRef));
case unmodified:
    trueRange = TrueRange(high, close, low);
}
input averageType = AverageType.SIMPLE;
input firstTrade = {default long, short};
#input averageType = AverageType.WILDERS;####Use Simple instead of Wilders
def loss = ATRFactor * MovingAverage(averageType, trueRange, ATRPeriod);
def state = {default init, long, short};
def trail;
switch (state[1]) {
case init:
    if (!IsNaN(loss)) {
        switch (firstTrade) {
        case long:
            state = state.long;
            trail =  close - loss;
        case short:
            state = state.short;
            trail = close + loss;
    }
    } else {
        state = state.init;
        trail = Double.NaN;
    }
case long:
    if (close > trail[1]) {
        state = state.long;
        trail = Max(trail[1], close - loss);
    } else {
        state = state.short;
        trail = close + loss;
    }
case short:
    if (close < trail[1]) {
        state = state.short;
        trail = Min(trail[1], close + loss);
    } else {
        state = state.long;
        trail =  close - loss;
    }
}

def TrailingStop = trail;
def H = Highest(TrailingStop, 12);
def L = Lowest(TrailingStop, 12);
def BulgeLengthPrice = 100;
def SqueezeLengthPrice = 100;
def BandwidthC3 = (H - L);
def IntermResistance2 = Highest(BandwidthC3, BulgeLengthPrice);
def IntermSupport2 = Lowest(BandwidthC3, SqueezeLengthPrice);
def sqzTrigger = BandwidthC3 <= IntermSupport2;
def sqzLevel = if !sqzTrigger[1] and sqzTrigger then hl2
               else if !sqzTrigger then Double.NaN
               else sqzLevel[1];

plot Squeeze_Alert = sqzLevel;
Squeeze_Alert.SetPaintingStrategy(PaintingStrategy.POINTS);
Squeeze_Alert.SetLineWeight(3);
Squeeze_Alert.SetDefaultColor(Color.YELLOW);

#-----------------------------
#Yellow Candle_height (OB_OS)
#-----------------------------
def displace = 0;
def factorK2 = 3.25;
def lengthK2 = 20;
def price1 = open;
def trueRangeAverageType = AverageType.SIMPLE;
def ATR_length = 15;
def SMA_lengthS = 6;
input ATRPeriod2 = 5;
input ATRFactor2 = 1.5;
#input averageType = AverageType.WILDERS;####Use Simple instead of Wilders
def HiLo2 = Min(high - low, 1.5 * Average(high - low, ATRPeriod));
def HRef2 = if low <= high[1]
    then high - close[1]
    else (high - close[1]) - 0.5 * (low - high[1]);
def LRef2 = if high >= low[1]
    then close[1] - low
    else (close[1] - low) - 0.5 * (low[1] - high);
def loss2 = ATRFactor2 * MovingAverage(averageType, trueRange, ATRPeriod2);

def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def shiftK2 = factorK2 * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK2);
def averageK2 = MovingAverage(averageType, price, lengthK2);
def AvgK2 = averageK2[-displace];
def Upper_BandK2 = averageK2[-displace] + shiftK2[-displace];
def Lower_BandK2 = averageK2[-displace] - shiftK2[-displace];

def condition_BandRevDn = (Upper_BandS > Upper_BandK2);
def condition_BandRevUp = (Lower_BandS < Lower_BandK2);

def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg1;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg1 = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg1 = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg1;
def MACDLevel = 0.0;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;
def condition1D = Value[1] > Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def condition2D = (RSI[3] > RSI) is true or (RSI < 20) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def condition3D = (MoneyFlowIndex[2] > MoneyFlowIndex) is true or (MoneyFlowIndex < 20) is true;
def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def condition4D = (Intermed[1] > Intermed) or (NearT < MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;
def condition5D = CIP_DOWN;

#EMA_1
def EMA_length = 8;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);
def condition6D = (price < AvgExp) and (AvgExp[2] > AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp2[2] <= AvgExp);
def condition7D = (price < AvgExp2) and (AvgExp2[2] > AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;
def condition8D = Osc < ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;
def condition9D = Periods < 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def condition10D = PFE < 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def condition11D = PercentB < HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);
def condition12D = (Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0);
def condition13D = (KVOH < 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def condition14D = PROSC < 50;
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 12;
def Agreement_LevelOS = 2;

def factorK = 2.0;
def lengthK = 20;
def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1UP = price >= Upper_BandK;
def conditionK2UP = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK3DN = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);
def conditionK4DN = price < Lower_BandK;
def Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionK1UP + conditionK2UP;

def Agreement_LevelD = (condition1D + condition2D + condition3D + condition4D + condition5D + condition6D + condition7D + condition8D + condition9D + condition10D + condition11D + condition12D + condition13D + condition14D + conditionK3DN + conditionK4DN);

def Consensus_Level = Agreement_Level - Agreement_LevelD;

def UP2 = Consensus_Level >= 4;
def DOWN2 = Consensus_Level < -5;

def priceColor2 = if UP2 then 1
                 else if DOWN2 then -1
                 else priceColor2[1];

def Consensus_Level_OB = 14;
def Consensus_Level_OS = -12;

#Super_OB/OS Signal
def OB_Level = conditionOB1 + conditionOB2 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS2 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

def Consensus_Line = OB_Level - OS_Level;
def Zero_Line = 0;
def Super_OB = 4;
def Super_OS = -4;

def DOWN_OB = (Agreement_Level > Agreement_LevelOB) and (Consensus_Line > Super_OB) and (Consensus_Level > Consensus_Level_OB);
def UP_OS = (Agreement_Level < Agreement_LevelOS) and (Consensus_Line < Super_OS) and (Consensus_Level < Consensus_Level_OS);

def OS_Buy = UP_OS;
def OB_Sell = DOWN_OB;
def neutral = Consensus_Line < Super_OB and Consensus_Line > Super_OS;



input use_line_limits = yes;#Yes, plots line from/to; No, plot line across entire chart
input linefrom = 100;#Hint linefrom: limits how far line plots in candle area
input lineto   = 12;#Hint lineto: limits how far into expansion the line will plot

def YHOB = if coloredCandlesOn and ((price1 > Upper_BandS) and (condition_BandRevDn)) then high else Double.NaN;
def YHOS = if coloredCandlesOn and ((price1 < Lower_BandS) and (condition_BandRevUp)) then high else Double.NaN;

def YLOB = if coloredCandlesOn and ((price1 > Upper_BandS) and (condition_BandRevDn)) then low else Double.NaN;
def YLOS = if coloredCandlesOn and ((price1 < Lower_BandS) and (condition_BandRevUp)) then low else Double.NaN;

#extend midline of yellow candle
plot YCOB = if !IsNaN(YHOB) then hl2 else Double.NaN;
YCOB.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YCOB.SetDefaultColor(Color.GREEN);
def YHextOB = if IsNaN(YCOB) then YHextOB[1] else YCOB;
plot YHextlineOB = YHextOB;
YHextlineOB.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YHextlineOB.SetDefaultColor(Color.ORANGE);
YHextlineOB.SetLineWeight(2);

plot YCOS = if !IsNaN(YHOS) then hl2 else Double.NaN;
YCOS.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YCOS.SetDefaultColor(Color.GREEN);
def YHextOS = if IsNaN(YCOS) then YHextOS[1] else YCOS;
plot YHextlineOS = YHextOS;
YHextlineOS.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YHextlineOS.SetDefaultColor(Color.LIGHT_GREEN);
YHextlineOS.SetLineWeight(2);

def YC = coloredCandlesOn and priceColor2 == 1 and price1 > Upper_BandS and condition_BandRevDn;

#Additional Signals
input showCloud = yes;
#AddCloud(if showCloud and condition_BandRevUp then Lower_BandK2 else Double.NaN,  Lower_BandS,  Color.LIGHT_GREEN,  Color.CURRENT);
#AddCloud(if showCloud and condition_BandRevDn then Upper_BandS else Double.NaN,  Upper_BandK2,  Color.LIGHT_RED,  Color.CURRENT);

# Identify Consolidation

def HH = Highest(high[1], BarsUsedForRange);
def LL = Lowest(low[1], BarsUsedForRange);

def maxH = Highest(HH, BarsRequiredToRemainInRange);
def maxL = Lowest(LL, BarsRequiredToRemainInRange);

def HHn = if maxH == maxH[1] or maxL == maxL then maxH else HHn[1];
def LLn = if maxH == maxH[1] or maxL == maxL then maxL else LLn[1];

def Bh = if high <= HHn and HHn == HHn[1] then HHn else Double.NaN;
def Bl = if low >= LLn and LLn == LLn[1] then LLn else Double.NaN;

def CountH = if IsNaN(Bh) or IsNaN(Bl) then 2 else CountH[1] + 1;
def CountL = if IsNaN(Bh) or IsNaN(Bl) then 2 else CountL[1] + 1;

def ExpH = if BarNumber() == 1 then Double.NaN else
            if CountH[-BarsRequiredToRemainInRange] >= BarsRequiredToRemainInRange then HHn[-BarsRequiredToRemainInRange] else
            if high <= ExpH[1] then ExpH[1] else Double.NaN;

def ExpL = if BarNumber() == 1 then Double.NaN else
            if CountL[-BarsRequiredToRemainInRange] >= BarsRequiredToRemainInRange then LLn[-BarsRequiredToRemainInRange] else
            if low >= ExpL[1] then ExpL[1] else Double.NaN;

# Plot the High and Low of the Box; Paint Cloud
def BoxHigh = if ((DOWN_OB) or (Upper_BandS crosses above Upper_BandK2) or (condition_BandRevDn) and (high > high[1]) and ((price > Upper_BandK2) or (price > Upper_BandS))) then Highest(ExpH) else Double.NaN;

def BoxLow = if (DOWN_OB) or ((Upper_BandS crosses above Upper_BandK2)) then Lowest(low) else Double.NaN;

def BoxHigh2 = if ((UP_OS) or ((Lower_BandS crosses below Lower_BandK2))) then Highest(ExpH) else Double.NaN;

#def BH2 = if !IsNaN(BoxHigh2) then high else Double.NaN;

#def BH2ext = if IsNaN(BH2) then BH2ext[1] else BH2;
#def BH2extline = BH2ext;

#plot H_BH2extline = Lowest(BH2extline, 1);
#H_BH2extline.SetDefaultColor(Color.GREEN);

def BoxLow2 = if ((UP_OS) or (Lower_BandS crosses below Lower_BandK2) or (condition_BandRevUp) and (low < low[1]) and ((price < Lower_BandK2) or (price < Lower_BandS))) or ((UP_OS[1]) and (low < low[1])) then Lowest(low) else Double.NaN;

# extend the current YCHigh line to the right edge of the chart
def BH1 = if !IsNaN(BoxHigh) then high else Double.NaN;

def BH1ext = if IsNaN(BH1) then BH1ext[1] else BH1;
def BH1extline = BH1ext;


def BL1 = if !IsNaN(BoxLow) then low else Double.NaN;
#BL1.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BL1.SetDefaultColor(Color.RED);
def BL1ext = if IsNaN(BL1) then BL1ext[1] else BL1;
plot BL1extline = BL1ext;
BL1extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
BL1extline.SetDefaultColor(Color.RED);
BL1extline.SetLineWeight(1);

def BH2 = if !IsNaN(BoxHigh2) then high else Double.NaN;
#BH2.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BH2.SetDefaultColor(Color.GREEN);
def BH2ext = if IsNaN(BH2) then BH2ext[1] else BH2;
def BH2extline = BH2ext;
#BH2extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BH2extline.SetDefaultColor(Color.GREEN);
#BH2extline.SetLineWeight(3);

def BL2 = if !IsNaN(BoxLow2) then low else Double.NaN;
#BL2.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BL2.SetDefaultColor(Color.RED);
def BL2ext = if IsNaN(BL2) then BL2ext[1] else BL2;
plot BL2extline = BL2ext;
BL2extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
BL2extline.SetDefaultColor(Color.GREEN);
BL2extline.SetLineWeight(1);

plot H_BH1extline = Highest(BH1extline, 1);
H_BH1extline.SetDefaultColor(Color.RED);
plot L_BL1extline = Highest(BL1extline, 1);
L_BL1extline.SetDefaultColor(Color.RED);

plot H_BH2extline = Lowest(BH2extline, 1);
     H_BH2extline.SetDefaultColor(Color.Green);
plot L_BL2extline = Lowest(BL2extline, 1);
L_BL2extline.SetDefaultColor(Color.GREEN);

#plot L_BL1extline = Highest(BL1extline, 1);
#     L_BL1extline.SetDefaultColor(Color.Red);

AddCloud(if showCloud and !HideCloud then BH1extline else Double.NaN, BL1extline, Color.RED, Color.GRAY);
AddCloud(if showCloud and !HideCloud then BH2extline else Double.NaN, BL2extline, Color.GREEN, Color.GRAY);

script WMA_Smooth {
    input price = hl2;
    plot smooth = (4 * price
+ 3 * price[1]
+ 2 * price[2]
+ price[3]) / 10;
}

script Phase_Accumulation {

    input price = hl2;

    rec Smooth;
    rec Detrender;
    rec Period;
    rec Q1;
    rec I1;
    rec I1p;
    rec Q1p;
    rec Phase1;
    rec Phase;
    rec DeltaPhase;
    rec DeltaPhase1;
    rec InstPeriod1;
    rec InstPeriod;
    def CorrectionFactor;

    if BarNumber() <= 5
    then {
        Period = 0;
        Smooth = 0;
        Detrender = 0;
        CorrectionFactor = 0;
        Q1 = 0;
        I1 = 0;
        Q1p = 0;
        I1p = 0;
        Phase = 0;
        Phase1 = 0;
        DeltaPhase1 = 0;
        DeltaPhase = 0;
        InstPeriod = 0;
        InstPeriod1 = 0;
    } else {
        CorrectionFactor = 0.075 * Period[1] + 0.54;

# Smooth and detrend my smoothed signal:
        Smooth = WMA_Smooth(price);
        Detrender = ( 0.0962 * Smooth
+ 0.5769 * Smooth[2]
- 0.5769 * Smooth[4]
- 0.0962 * Smooth[6] ) * CorrectionFactor;

# Compute Quadrature and Phase of Detrended signal:
        Q1p = ( 0.0962 * Detrender
+ 0.5769 * Detrender[2]
- 0.5769 * Detrender[4]
- 0.0962 * Detrender[6] ) * CorrectionFactor;
        I1p = Detrender[3];

# Smooth out Quadrature and Phase:
        I1 = 0.15 * I1p + 0.85 * I1p[1];
        Q1 = 0.15 * Q1p + 0.85 * Q1p[1];

# Determine Phase
        if I1 != 0
        then {
# Normally, ATAN gives results from -pi/2 to pi/2.
# We need to map this to circular coordinates 0 to 2pi

            if Q1 >= 0 and I1 > 0
            then { # Quarant 1
                Phase1 = ATan(AbsValue(Q1 / I1));
            } else if Q1 >= 0 and I1 < 0
            then { # Quadrant 2
                Phase1 = Double.Pi - ATan(AbsValue(Q1 / I1));
            } else if Q1 < 0 and I1 < 0
            then { # Quadrant 3
                Phase1 = Double.Pi + ATan(AbsValue(Q1 / I1));
            } else { # Quadrant 4
                Phase1 = 2 * Double.Pi - ATan(AbsValue(Q1 / I1));
            }
        } else if Q1 > 0
        then { # I1 == 0, Q1 is positive
            Phase1 = Double.Pi / 2;
        } else if Q1 < 0
        then { # I1 == 0, Q1 is negative
            Phase1 = 3 * Double.Pi / 2;
        } else { # I1 and Q1 == 0
            Phase1 = 0;
        }

# Convert phase to degrees
        Phase = Phase1 * 180 / Double.Pi;

        if Phase[1] < 90 and Phase > 270
        then {
# This occurs when there is a big jump from 360-0
            DeltaPhase1 = 360 + Phase[1] - Phase;
        } else {
            DeltaPhase1 = Phase[1] - Phase;
        }

# Limit our delta phases between 7 and 60
        if DeltaPhase1 < 7
        then {
            DeltaPhase = 7;
        } else if DeltaPhase1 > 60
        then {
            DeltaPhase = 60;
        } else {
            DeltaPhase = DeltaPhase1;
        }

# Determine Instantaneous period:
        InstPeriod1 =
-1 * (fold i = 0 to 40 with v=0 do
if v < 0 then
v
else if v > 360 then
-i
else
v + GetValue(DeltaPhase, i, 41)
);

        if InstPeriod1 <= 0
        then {
            InstPeriod = InstPeriod[1];
        } else {
            InstPeriod = InstPeriod1;
        }

        Period = 0.25 * InstPeriod + 0.75 * Period[1];
    }
    plot DC = Period;
}

script Ehler_MAMA {
    input price = hl2;
    input FastLimit = 0.5;
    input SlowLimit = 0.05;


    rec Period;
    rec Period_raw;
    rec Period_cap;
    rec Period_lim;

    rec Smooth;
    rec Detrender;
    rec I1;
    rec Q1;
    rec jI;
    rec jQ;
    rec I2;
    rec Q2;
    rec I2_raw;
    rec Q2_raw;

    rec Phase;
    rec DeltaPhase;
    rec DeltaPhase_raw;
    rec alpha;
    rec alpha_raw;

    rec Re;
    rec Im;
    rec Re_raw;
    rec Im_raw;

    rec SmoothPeriod;
    rec vmama;
    rec vfama;

    def CorrectionFactor = Phase_Accumulation(price).CorrectionFactor;

    if BarNumber() <= 5
    then {
        Smooth = 0;
        Detrender = 0;

        Period = 0;
        Period_raw = 0;
        Period_cap = 0;
        Period_lim = 0;
        I1 = 0;
        Q1 = 0;
        I2 = 0;
        Q2 = 0;
        jI = 0;
        jQ = 0;
        I2_raw = 0;
        Q2_raw = 0;
        Re = 0;
        Im = 0;
        Re_raw = 0;
        Im_raw = 0;
        SmoothPeriod = 0;
        Phase = 0;
        DeltaPhase = 0;
        DeltaPhase_raw = 0;
        alpha = 0;
        alpha_raw = 0;
        vmama = 0;
        vfama = 0;
    } else {
# Smooth and detrend my smoothed signal:
        Smooth = WMA_Smooth(price);
        Detrender = ( 0.0962 * Smooth
+ 0.5769 * Smooth[2]
- 0.5769 * Smooth[4]
- 0.0962 * Smooth[6] ) * CorrectionFactor;

        Q1 = ( 0.0962 * Detrender
+ 0.5769 * Detrender[2]
- 0.5769 * Detrender[4]
- 0.0962 * Detrender[6] ) * CorrectionFactor;
        I1 = Detrender[3];

        jI = ( 0.0962 * I1
+ 0.5769 * I1[2]
- 0.5769 * I1[4]
- 0.0962 * I1[6] ) * CorrectionFactor;

        jQ = ( 0.0962 * Q1
+ 0.5769 * Q1[2]
- 0.5769 * Q1[4]
- 0.0962 * Q1[6] ) * CorrectionFactor;

# This is the complex conjugate
        I2_raw = I1 - jQ;
        Q2_raw = Q1 + jI;

        I2 = 0.2 * I2_raw + 0.8 * I2_raw[1];
        Q2 = 0.2 * Q2_raw + 0.8 * Q2_raw[1];

        Re_raw = I2 * I2[1] + Q2 * Q2[1];
        Im_raw = I2 * Q2[1] - Q2 * I2[1];

        Re = 0.2 * Re_raw + 0.8 * Re_raw[1];
        Im = 0.2 * Im_raw + 0.8 * Im_raw[1];

# Compute the phase
        if Re != 0 and Im != 0
        then {
            Period_raw = 2 * Double.Pi / ATan(Im / Re);
        } else {
            Period_raw = 0;
        }

        if Period_raw > 1.5 * Period_raw[1]
        then {
            Period_cap = 1.5 * Period_raw[1];
        } else if Period_raw < 0.67 * Period_raw[1] {
            Period_cap = 0.67 * Period_raw[1];
        } else {
            Period_cap = Period_raw;
        }

        if Period_cap < 6
        then {
            Period_lim = 6;
        } else if Period_cap > 50
        then {
            Period_lim = 50;
        } else {
            Period_lim = Period_cap;
        }

        Period = 0.2 * Period_lim + 0.8 * Period_lim[1];
        SmoothPeriod = 0.33 * Period + 0.67 * SmoothPeriod[1];

        if I1 != 0
        then {
            Phase = ATan(Q1 / I1);
        } else if Q1 > 0
        then { # Quadrant 1:
            Phase = Double.Pi / 2;
        } else if Q1 < 0
        then { # Quadrant 4:
            Phase = -Double.Pi / 2;
        } else { # Both numerator and denominator are 0.
            Phase = 0;
        }

        DeltaPhase_raw = Phase[1] - Phase;
        if DeltaPhase_raw < 1
        then {
            DeltaPhase = 1;
        } else {
            DeltaPhase = DeltaPhase_raw;
        }

        alpha_raw = FastLimit / DeltaPhase;
        if alpha_raw < SlowLimit
        then {
            alpha = SlowLimit;
        } else {
            alpha = alpha_raw;
        }
        vmama = alpha * price + (1 - alpha) * vmama[1];
        vfama = 0.5 * alpha * vmama + (1 - 0.5 * alpha) * vfama[1];
    }

    plot MAMA = vmama;
    plot FAMA = vfama;
}


input price2 = hl2;
input FastLimit = 0.5;
input SlowLimit = 0.05;

def MAMA = Ehler_MAMA(price2, FastLimit, SlowLimit).MAMA;
def FAMA = Ehler_MAMA(price2, FastLimit, SlowLimit).FAMA;

def Crossing = Crosses((MAMA < FAMA), yes);
#Crossing.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);

def Crossing1 = Crosses((MAMA > FAMA), yes);
#Crossing1.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);

AddLabel(yes, Concat("MAMA: ", Concat("",
if MAMA > FAMA then "Bull" else "Bear")),

if MAMA > FAMA then Color.GREEN else Color.RED);

##################################
plot C3_MF_Line = (MAMA + FAMA) / 2;
C3_MF_Line.SetPaintingStrategy(PaintingStrategy.LINE);
C3_MF_Line.SetLineWeight(3);
C3_MF_Line.AssignValueColor(if ((priceColor2 == 1) and (price1 > Upper_BandS) and (condition_BandRevDn)) then Color.YELLOW else if ((priceColor2 == -1) and (price1 < Lower_BandS) and (condition_BandRevUp)) then Color.YELLOW else if priceColor2 == -1 then Color.RED  else if (priceColor2 == 1) then Color.GREEN else Color.CURRENT);

def C3_MF_UP = C3_MF_Line > C3_MF_Line[1];
def C3_MF_DN = C3_MF_Line < C3_MF_Line[1];
def priceColor9 = if C3_MF_UP then 1
                 else if C3_MF_DN then -1
                 else priceColor9[1];

def MF_UP = FAMA < MAMA;
def MF_DN = FAMA > MAMA;
def priceColor10 = if MF_UP then 1
                 else if MF_DN then -1
                 else priceColor10[1];

input extension_length_limited_to = 10;
def lastbar = if isnan(close[-1]) and !isnan(close) then barnumber() else double.nan;
def inertline = inertiaall(C3_MF_Line,2);
def EXT_C3_MF = if !IsNaN(close()) then inertline else EXT_C3_MF[1] + ((EXT_C3_MF[1] - EXT_C3_MF[2]) / (2 - 1));
plot extension = if barnumber()<=highestall(lastbar)+ extension_length_limited_to then EXT_C3_MF else double.nan;
extension.SetDefaultColor(Color.white);
####################################################################################################################################################

#EMA's
input length8 = 10;
input length9 = 35;
input show_ema_cloud = yes;

plot AvgExp8 = ExpAverage(price[-displace], length8);
def UPD = AvgExp8[1] < AvgExp8;
AvgExp8.SetStyle(Curve.SHORT_DASH);
#AvgExp8.SetLineWeight(1);

plot AvgExp9 = ExpAverage(price[-displace], length9);
def UPW = AvgExp9[1] < AvgExp9;
AvgExp9.SetStyle(Curve.SHORT_DASH);
#AvgExp9.SetLineWeight(1);

def Below = AvgExp8 < AvgExp9;
def Spark = UPD + UPW + Below;

def UPEMA = AvgExp8[1] < AvgExp8;
def DOWNEMA = AvgExp8[1] > AvgExp8;
AvgExp8.AssignValueColor(if UPEMA then Color.LIGHT_GREEN else if DOWNEMA then Color.RED else Color.YELLOW);

def UPEMA2 = AvgExp9[1] < AvgExp9;
def DOWNEMA2 = AvgExp9[1] > AvgExp9;
AvgExp9.AssignValueColor(if UPEMA2 then Color.LIGHT_GREEN else if DOWNEMA2 then Color.RED else Color.YELLOW);

AddCloud(if show_ema_cloud and (AvgExp9 > AvgExp8) then AvgExp9 else Double.NaN, AvgExp8, Color.LIGHT_RED, Color.CURRENT);
AddCloud(if show_ema_cloud and (AvgExp8 > AvgExp9) then AvgExp8 else Double.NaN, AvgExp9, Color.LIGHT_GREEN, Color.CURRENT);

def UP8 = UPEMA and UPEMA2;
def DOWN8 = DOWNEMA and DOWNEMA2;
def priceColor8 = if UP8 then 1
                 else if DOWN8 then -1
                 else 0;

def UpCalc =  (priceColor == 1) + (priceColor2 == 1) + (priceColor8 == 1) + (priceColor10 == 1);

def CandleColor = if (UpCalc >= 3) then 1
                 else if (UpCalc == 0) then -1
                 else if (priceColor2 == 1) then 1
                 else if (priceColor2 == -1) then -1
                 else CandleColor[1];
AssignPriceColor(if coloredCandlesOn and (CandleColor == 1) then Color.GREEN else if coloredCandlesOn and (CandleColor == -1) then Color.RED else Color.GRAY);

#Labels
def Buy = UP_OS;
def Sell = DOWN_OB;
def conditionLTB = (ConditionK2UP and (Consensus_Level < 0));
def conditionLTS = (ConditionK3DN and (Consensus_Level > 0));
def conditionBO = ((Upper_BandS[1] < Upper_BandS) and (Lower_BandS[1] < Lower_BandS)) and ((Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK));
def conditionBD = ((Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS) and (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK));
def MomentumUP = Consensus_Level[1] < Consensus_Level;
def MomentumDOWN = Consensus_Level[1] > Consensus_Level;

def Squeeze_Signal = !IsNaN(Squeeze_Alert);
def conditionOB = (Consensus_Level >= 12) and (Consensus_Line >= 4);
def conditionOS = (Consensus_Level <= -12) and (Consensus_Line <= -3);

AddLabel(yes, if conditionLTB then "BULLISH_LOOK_To_BUY" else if conditionLTS then "BEARISH_LOOK_TO_SELL" else if conditionK2UP then "TREND_BULLISH" else if conditionK3DN then "TREND_BEARISH" else "TREND_CONSOLIDATION", if conditionLTB then Color.GREEN else if conditionLTS then Color.RED else if conditionK2UP then Color.WHITE else if conditionK3DN then Color.DARK_GRAY else Color.GRAY);

AddLabel(yes, if conditionBD then "BREAKDOWN" else if conditionBO then "BREAKOUT" else "NO_BREAK", if conditionBD then Color.RED else if conditionBO then Color.GREEN else Color.GRAY);

AddLabel(yes, if (Spark == 3) then "SPARK UP = " + Round(Spark, 1) else if (Spark == 0) then  "SPARK DOWN = " + Round(Spark, 1) else "SPARK = " + Round(Spark, 1), if (Spark == 3) then Color.YELLOW else if (Spark == 2) then Color.GREEN else if (Spark == 0) then Color.RED else Color.GRAY);

AddLabel(yes, "SQUEEZE ALERT", if Squeeze_Signal then Color.YELLOW else Color.GRAY);

AddLabel(yes, if MomentumUP then "Consensus_Increasing = " + Round(Consensus_Level, 1) else if MomentumUP or MomentumDOWN and conditionOB then "Consensus_OVERBOUGHT = " + Round(Consensus_Level, 1) else if MomentumDOWN then  "Consensus_Decreasing = " + Round(Consensus_Level, 1) else if MomentumUP or MomentumDOWN and conditionOS then "Consensus_OVERSOLD = " + Round(Consensus_Level, 1) else "Consensus = " + Round(Consensus_Level, 1), if conditionOB then Color.RED else if conditionOS then Color.GREEN else Color.GRAY);

Here is the code for C3_Max_v2_SPX_Forex.
Code:
#C3_Max_v2_SPX_Forex Created by Christopher84 03/14/2021 
# Based off of the Confirmation Candles Study. Main difference is that CC Candles weigh factors of positive
# and negative price movement to create the Consensus_Level. The Consensus_Level is considered positive if
# above zero and negative if below zero.

declare upper;

input price = CLOSE;
input ShortLength1 = 5;
input ShortLength2 = 14;
input ShortLength3 = 5;
input LongLength1 = 12;
input LongLength2 = 55;
input LongLength3 = 7;
input coloredCandlesOn = yes;

# Momentum Oscillators

def MS = Average(Average(price, ShortLength1) - Average(price, ShortLength2), ShortLength3);
def MS2 = Average(Average(price, LongLength1) - Average(price, LongLength2), LongLength3);
# Wave A
def MSGreens = If (MS >= 0, MS, 0);
def MSReds = If (MS < 0, MS, 0);
# Wave C
def MS2Blues = If (MS2 >= 0, MS2, 0);
def MS2Yellows = If (MS2 < 0, MS2, 0);

def MayhemBullish = MSGreens > MSGreens[1] and  MS2Blues > MS2Blues[1];
def MayhemBearish =  MSReds < MSReds[1] and  MS2Yellows < MS2Yellows[1];

def MS_Pos = MSGreens;
def MS_Neg = MSReds;
def MS2_Pos = MS2Blues;
def MS2_Neg = MS2Yellows;

# Squeeze Indicator
def length = 20;
def nK = 1.5;
def nBB = 2.0;

def BBHalfWidth = StDev(price, length);
def KCHalfWidth = nK * Average(TrueRange(high,  close,  low),  length);
def isSqueezed = nBB * BBHalfWidth / KCHalfWidth < 1;

def BBS_Ind = If(isSqueezed, 0, Double.NaN);

# Bollinger Resolution
def BBSMA = Average(price, length);
def BBSMAL = BBSMA + (-nBB * BBHalfWidth);
def BBSMAU = BBSMA + (nBB * BBHalfWidth);
def PerB = RoundUp((price - BBSMAL) / (BBSMAU - BBSMAL) * 100, 0);
AddLabel(yes, Concat("%B: ", PerB), if PerB < 0 then Color.YELLOW else if PerB > 0 and PerB[1] < 0 then Color.GREEN else Color.WHITE);

# Parabolic SAR Signal
def accelerationFactor = 0.0275;
def accelerationLimit = 0.2;

def SAR = ParabolicSAR(accelerationFactor = accelerationFactor, accelerationLimit = accelerationLimit);
def bearishCross = Crosses(SAR, price, CrossingDirection.ABOVE);

plot signalDown = bearishCross;#If(bearishCross, 0, Double.NaN);
signalDown.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);
signalDown.SetLineWeight(3);
signalDown.AssignValueColor(Color.DOWNTICK);

def bullishCross = Crosses(SAR, price, CrossingDirection.BELOW);

plot signalUp =  bullishCross;#If(bullishCross, 0, Double.NaN);
signalUp.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);
signalUp.SetLineWeight(3);
signalUp.AssignValueColor(Color.UPTICK);

def UP = bullishCross;
def DOWN = bearishCross;
def priceColor = if UP then 1
                 else if DOWN then -1
                 else priceColor[1];

####################################################################################################################################################

#OB_OS_Levels_v5

def BarsUsedForRange = 2;
def BarsRequiredToRemainInRange = 2;
def TargetMultiple = 0.5;
def ColorPrice = yes;
def HideTargets = no;
def HideBalance = no;
def HideBoxLines = no;
def HideCloud = no;
def HideLabels = no;

#--------------
#Squeeze Alert
#--------------

#Squeeze Dots Created 04/28/2021 by Christopher84
input ATRPeriod = 5;
input ATRFactor = 2.0;
def HiLo = Min(high - low, 1.5 * Average(high - low, ATRPeriod));
def HRef = if low <= high[1]
    then high - close[1]
    else (high - close[1]) - 0.5 * (low - high[1]);
def LRef = if high >= low[1]
    then close[1] - low
    else (close[1] - low) - 0.5 * (low[1] - high);
input trailType = {default modified, unmodified};
def trueRange;
switch (trailType) {
case modified:
    trueRange = Max(HiLo, Max(HRef, LRef));
case unmodified:
    trueRange = TrueRange(high, close, low);
}
input averageType = AverageType.SIMPLE;
input firstTrade = {default long, short};
#input averageType = AverageType.WILDERS;####Use Simple instead of Wilders
def loss = ATRFactor * MovingAverage(averageType, trueRange, ATRPeriod);
def state = {default init, long, short};
def trail;
switch (state[1]) {
case init:
    if (!IsNaN(loss)) {
        switch (firstTrade) {
        case long:
            state = state.long;
            trail =  close - loss;
        case short:
            state = state.short;
            trail = close + loss;
    }
    } else {
        state = state.init;
        trail = Double.NaN;
    }
case long:
    if (close > trail[1]) {
        state = state.long;
        trail = Max(trail[1], close - loss);
    } else {
        state = state.short;
        trail = close + loss;
    }
case short:
    if (close < trail[1]) {
        state = state.short;
        trail = Min(trail[1], close + loss);
    } else {
        state = state.long;
        trail =  close - loss;
    }
}

def TrailingStop = trail;
def H = Highest(TrailingStop, 12);
def L = Lowest(TrailingStop, 12);
def BulgeLengthPrice = 100;
def SqueezeLengthPrice = 100;
def BandwidthC3 = (H - L);
def IntermResistance2 = Highest(BandwidthC3, BulgeLengthPrice);
def IntermSupport2 = Lowest(BandwidthC3, SqueezeLengthPrice);
def sqzTrigger = BandwidthC3 <= IntermSupport2;
def sqzLevel = if !sqzTrigger[1] and sqzTrigger then hl2
               else if !sqzTrigger then Double.NaN
               else sqzLevel[1];

plot Squeeze_Alert = sqzLevel;
Squeeze_Alert.SetPaintingStrategy(PaintingStrategy.POINTS);
Squeeze_Alert.SetLineWeight(3);
Squeeze_Alert.SetDefaultColor(Color.YELLOW);

#-----------------------------
#Yellow Candle_height (OB_OS)
#-----------------------------
def displace = 0;
def factorK2 = 3.25;
def lengthK2 = 20;
def price1 = open;
def trueRangeAverageType = AverageType.SIMPLE;
def ATR_length = 15;
def SMA_lengthS = 6;
input ATRPeriod2 = 5;
input ATRFactor2 = 1.5;
#input averageType = AverageType.WILDERS;####Use Simple instead of Wilders
def HiLo2 = Min(high - low, 1.5 * Average(high - low, ATRPeriod));
def HRef2 = if low <= high[1]
    then high - close[1]
    else (high - close[1]) - 0.5 * (low - high[1]);
def LRef2 = if high >= low[1]
    then close[1] - low
    else (close[1] - low) - 0.5 * (low[1] - high);
def loss2 = ATRFactor2 * MovingAverage(averageType, trueRange, ATRPeriod2);

def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def shiftK2 = factorK2 * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK2);
def averageK2 = MovingAverage(averageType, price, lengthK2);
def AvgK2 = averageK2[-displace];
def Upper_BandK2 = averageK2[-displace] + shiftK2[-displace];
def Lower_BandK2 = averageK2[-displace] - shiftK2[-displace];

def condition_BandRevDn = (Upper_BandS > Upper_BandK2);
def condition_BandRevUp = (Lower_BandS < Lower_BandK2);

def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg1;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg1 = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg1 = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg1;
def MACDLevel = 0.0;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;
def condition1D = Value[1] > Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def condition2D = (RSI[3] > RSI) is true or (RSI < 20) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
#def MFI_Length = 14;
#def MFIover_Sold = 20;
#def MFIover_Bought = 80;
#def movingAvgLength = 1;
#def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
#def MFIOverBought = MFIover_Bought;
#def MFIOverSold = MFIover_Sold;

#def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
#def condition3D = (MoneyFlowIndex[2] > MoneyFlowIndex) is true or (MoneyFlowIndex < 20) is true;
#def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
#def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def condition4D = (Intermed[1] > Intermed) or (NearT < MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;
def condition5D = CIP_DOWN;

#EMA_1
def EMA_length = 8;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);
def condition6D = (price < AvgExp) and (AvgExp[2] > AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp2[2] <= AvgExp);
def condition7D = (price < AvgExp2) and (AvgExp2[2] > AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;
def condition8D = Osc < ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;
def condition9D = Periods < 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def condition10D = PFE < 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def condition11D = PercentB < HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);
def condition12D = (Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS);

#Klinger Histogram
#def Klinger_Length = 13;
#def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
#def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
#def condition13 = (KVOH > 0);
#def condition13D = (KVOH < 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def condition14D = PROSC < 50;
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 12;
def Agreement_LevelOS = 2;

def factorK = 2.0;
def lengthK = 20;
def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1UP = price >= Upper_BandK;
def conditionK2UP = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK3DN = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);
def conditionK4DN = price < Lower_BandK;
def Agreement_Level = condition1 + condition2 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition14 + conditionK1UP + conditionK2UP;

def Agreement_LevelD = (condition1D + condition2D + condition4D + condition5D + condition6D + condition7D + condition8D + condition9D + condition10D + condition11D + condition12D + condition14D + conditionK3DN + conditionK4DN);

def Consensus_Level = Agreement_Level - Agreement_LevelD;

def UP2 = Consensus_Level >= 4;
def DOWN2 = Consensus_Level < -5;

def priceColor2 = if UP2 then 1
                 else if DOWN2 then -1
                 else priceColor2[1];

def Consensus_Level_OB = 14;
def Consensus_Level_OS = -12;

#Super_OB/OS Signal
def OB_Level = conditionOB1 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

def Consensus_Line = OB_Level - OS_Level;
def Zero_Line = 0;
def Super_OB = 4;
def Super_OS = -4;

def DOWN_OB = (Agreement_Level > Agreement_LevelOB) and (Consensus_Line > Super_OB) and (Consensus_Level > Consensus_Level_OB);
def UP_OS = (Agreement_Level < Agreement_LevelOS) and (Consensus_Line < Super_OS) and (Consensus_Level < Consensus_Level_OS);

def OS_Buy = UP_OS;
def OB_Sell = DOWN_OB;
def neutral = Consensus_Line < Super_OB and Consensus_Line > Super_OS;



input use_line_limits = yes;#Yes, plots line from/to; No, plot line across entire chart
input linefrom = 100;#Hint linefrom: limits how far line plots in candle area
input lineto   = 12;#Hint lineto: limits how far into expansion the line will plot

def YHOB = if coloredCandlesOn and ((price1 > Upper_BandS) and (condition_BandRevDn)) then high else Double.NaN;
def YHOS = if coloredCandlesOn and ((price1 < Lower_BandS) and (condition_BandRevUp)) then high else Double.NaN;

def YLOB = if coloredCandlesOn and ((price1 > Upper_BandS) and (condition_BandRevDn)) then low else Double.NaN;
def YLOS = if coloredCandlesOn and ((price1 < Lower_BandS) and (condition_BandRevUp)) then low else Double.NaN;

#extend midline of yellow candle
plot YCOB = if !IsNaN(YHOB) then hl2 else Double.NaN;
YCOB.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YCOB.SetDefaultColor(Color.GREEN);
def YHextOB = if IsNaN(YCOB) then YHextOB[1] else YCOB;
plot YHextlineOB = YHextOB;
YHextlineOB.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YHextlineOB.SetDefaultColor(Color.ORANGE);
YHextlineOB.SetLineWeight(2);

plot YCOS = if !IsNaN(YHOS) then hl2 else Double.NaN;
YCOS.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YCOS.SetDefaultColor(Color.GREEN);
def YHextOS = if IsNaN(YCOS) then YHextOS[1] else YCOS;
plot YHextlineOS = YHextOS;
YHextlineOS.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YHextlineOS.SetDefaultColor(Color.LIGHT_GREEN);
YHextlineOS.SetLineWeight(2);

def YC = coloredCandlesOn and priceColor2 == 1 and price1 > Upper_BandS and condition_BandRevDn;

#Additional Signals
input showCloud = yes;
#AddCloud(if showCloud and condition_BandRevUp then Lower_BandK2 else Double.NaN,  Lower_BandS,  Color.LIGHT_GREEN,  Color.CURRENT);
#AddCloud(if showCloud and condition_BandRevDn then Upper_BandS else Double.NaN,  Upper_BandK2,  Color.LIGHT_RED,  Color.CURRENT);

# Identify Consolidation

def HH = Highest(high[1], BarsUsedForRange);
def LL = Lowest(low[1], BarsUsedForRange);

def maxH = Highest(HH, BarsRequiredToRemainInRange);
def maxL = Lowest(LL, BarsRequiredToRemainInRange);

def HHn = if maxH == maxH[1] or maxL == maxL then maxH else HHn[1];
def LLn = if maxH == maxH[1] or maxL == maxL then maxL else LLn[1];

def Bh = if high <= HHn and HHn == HHn[1] then HHn else Double.NaN;
def Bl = if low >= LLn and LLn == LLn[1] then LLn else Double.NaN;

def CountH = if IsNaN(Bh) or IsNaN(Bl) then 2 else CountH[1] + 1;
def CountL = if IsNaN(Bh) or IsNaN(Bl) then 2 else CountL[1] + 1;

def ExpH = if BarNumber() == 1 then Double.NaN else
            if CountH[-BarsRequiredToRemainInRange] >= BarsRequiredToRemainInRange then HHn[-BarsRequiredToRemainInRange] else
            if high <= ExpH[1] then ExpH[1] else Double.NaN;

def ExpL = if BarNumber() == 1 then Double.NaN else
            if CountL[-BarsRequiredToRemainInRange] >= BarsRequiredToRemainInRange then LLn[-BarsRequiredToRemainInRange] else
            if low >= ExpL[1] then ExpL[1] else Double.NaN;

# Plot the High and Low of the Box; Paint Cloud
def BoxHigh = if ((DOWN_OB) or (Upper_BandS crosses above Upper_BandK2) or (condition_BandRevDn) and (high > high[1]) and ((price > Upper_BandK2) or (price > Upper_BandS))) then Highest(ExpH) else Double.NaN;

def BoxLow = if (DOWN_OB) or ((Upper_BandS crosses above Upper_BandK2)) then Lowest(low) else Double.NaN;

def BoxHigh2 = if ((UP_OS) or ((Lower_BandS crosses below Lower_BandK2))) then Highest(ExpH) else Double.NaN;

#def BH2 = if !IsNaN(BoxHigh2) then high else Double.NaN;

#def BH2ext = if IsNaN(BH2) then BH2ext[1] else BH2;
#def BH2extline = BH2ext;

#plot H_BH2extline = Lowest(BH2extline, 1);
#H_BH2extline.SetDefaultColor(Color.GREEN);

def BoxLow2 = if ((UP_OS) or (Lower_BandS crosses below Lower_BandK2) or (condition_BandRevUp) and (low < low[1]) and ((price < Lower_BandK2) or (price < Lower_BandS))) or ((UP_OS[1]) and (low < low[1])) then Lowest(low) else Double.NaN;

# extend the current YCHigh line to the right edge of the chart
def BH1 = if !IsNaN(BoxHigh) then high else Double.NaN;

def BH1ext = if IsNaN(BH1) then BH1ext[1] else BH1;
def BH1extline = BH1ext;


def BL1 = if !IsNaN(BoxLow) then low else Double.NaN;
#BL1.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BL1.SetDefaultColor(Color.RED);
def BL1ext = if IsNaN(BL1) then BL1ext[1] else BL1;
plot BL1extline = BL1ext;
BL1extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
BL1extline.SetDefaultColor(Color.RED);
BL1extline.SetLineWeight(1);

def BH2 = if !IsNaN(BoxHigh2) then high else Double.NaN;
#BH2.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BH2.SetDefaultColor(Color.GREEN);
def BH2ext = if IsNaN(BH2) then BH2ext[1] else BH2;
def BH2extline = BH2ext;
#BH2extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BH2extline.SetDefaultColor(Color.GREEN);
#BH2extline.SetLineWeight(3);

def BL2 = if !IsNaN(BoxLow2) then low else Double.NaN;
#BL2.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BL2.SetDefaultColor(Color.RED);
def BL2ext = if IsNaN(BL2) then BL2ext[1] else BL2;
plot BL2extline = BL2ext;
BL2extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
BL2extline.SetDefaultColor(Color.GREEN);
BL2extline.SetLineWeight(1);

plot H_BH1extline = Highest(BH1extline, 1);
H_BH1extline.SetDefaultColor(Color.RED);
plot L_BL1extline = Highest(BL1extline, 1);
L_BL1extline.SetDefaultColor(Color.RED);

plot H_BH2extline = Lowest(BH2extline, 1);
     H_BH2extline.SetDefaultColor(Color.Green);
plot L_BL2extline = Lowest(BL2extline, 1);
L_BL2extline.SetDefaultColor(Color.GREEN);

#plot L_BL1extline = Highest(BL1extline, 1);
#     L_BL1extline.SetDefaultColor(Color.Red);

AddCloud(if showCloud and !HideCloud then BH1extline else Double.NaN, BL1extline, Color.RED, Color.GRAY);
AddCloud(if showCloud and !HideCloud then BH2extline else Double.NaN, BL2extline, Color.GREEN, Color.GRAY);

script WMA_Smooth {
    input price = hl2;
    plot smooth = (4 * price
+ 3 * price[1]
+ 2 * price[2]
+ price[3]) / 10;
}

script Phase_Accumulation {

    input price = hl2;

    rec Smooth;
    rec Detrender;
    rec Period;
    rec Q1;
    rec I1;
    rec I1p;
    rec Q1p;
    rec Phase1;
    rec Phase;
    rec DeltaPhase;
    rec DeltaPhase1;
    rec InstPeriod1;
    rec InstPeriod;
    def CorrectionFactor;

    if BarNumber() <= 5
    then {
        Period = 0;
        Smooth = 0;
        Detrender = 0;
        CorrectionFactor = 0;
        Q1 = 0;
        I1 = 0;
        Q1p = 0;
        I1p = 0;
        Phase = 0;
        Phase1 = 0;
        DeltaPhase1 = 0;
        DeltaPhase = 0;
        InstPeriod = 0;
        InstPeriod1 = 0;
    } else {
        CorrectionFactor = 0.075 * Period[1] + 0.54;

# Smooth and detrend my smoothed signal:
        Smooth = WMA_Smooth(price);
        Detrender = ( 0.0962 * Smooth
+ 0.5769 * Smooth[2]
- 0.5769 * Smooth[4]
- 0.0962 * Smooth[6] ) * CorrectionFactor;

# Compute Quadrature and Phase of Detrended signal:
        Q1p = ( 0.0962 * Detrender
+ 0.5769 * Detrender[2]
- 0.5769 * Detrender[4]
- 0.0962 * Detrender[6] ) * CorrectionFactor;
        I1p = Detrender[3];

# Smooth out Quadrature and Phase:
        I1 = 0.15 * I1p + 0.85 * I1p[1];
        Q1 = 0.15 * Q1p + 0.85 * Q1p[1];

# Determine Phase
        if I1 != 0
        then {
# Normally, ATAN gives results from -pi/2 to pi/2.
# We need to map this to circular coordinates 0 to 2pi

            if Q1 >= 0 and I1 > 0
            then { # Quarant 1
                Phase1 = ATan(AbsValue(Q1 / I1));
            } else if Q1 >= 0 and I1 < 0
            then { # Quadrant 2
                Phase1 = Double.Pi - ATan(AbsValue(Q1 / I1));
            } else if Q1 < 0 and I1 < 0
            then { # Quadrant 3
                Phase1 = Double.Pi + ATan(AbsValue(Q1 / I1));
            } else { # Quadrant 4
                Phase1 = 2 * Double.Pi - ATan(AbsValue(Q1 / I1));
            }
        } else if Q1 > 0
        then { # I1 == 0, Q1 is positive
            Phase1 = Double.Pi / 2;
        } else if Q1 < 0
        then { # I1 == 0, Q1 is negative
            Phase1 = 3 * Double.Pi / 2;
        } else { # I1 and Q1 == 0
            Phase1 = 0;
        }

# Convert phase to degrees
        Phase = Phase1 * 180 / Double.Pi;

        if Phase[1] < 90 and Phase > 270
        then {
# This occurs when there is a big jump from 360-0
            DeltaPhase1 = 360 + Phase[1] - Phase;
        } else {
            DeltaPhase1 = Phase[1] - Phase;
        }

# Limit our delta phases between 7 and 60
        if DeltaPhase1 < 7
        then {
            DeltaPhase = 7;
        } else if DeltaPhase1 > 60
        then {
            DeltaPhase = 60;
        } else {
            DeltaPhase = DeltaPhase1;
        }

# Determine Instantaneous period:
        InstPeriod1 =
-1 * (fold i = 0 to 40 with v=0 do
if v < 0 then
v
else if v > 360 then
-i
else
v + GetValue(DeltaPhase, i, 41)
);

        if InstPeriod1 <= 0
        then {
            InstPeriod = InstPeriod[1];
        } else {
            InstPeriod = InstPeriod1;
        }

        Period = 0.25 * InstPeriod + 0.75 * Period[1];
    }
    plot DC = Period;
}

script Ehler_MAMA {
    input price = hl2;
    input FastLimit = 0.5;
    input SlowLimit = 0.05;


    rec Period;
    rec Period_raw;
    rec Period_cap;
    rec Period_lim;

    rec Smooth;
    rec Detrender;
    rec I1;
    rec Q1;
    rec jI;
    rec jQ;
    rec I2;
    rec Q2;
    rec I2_raw;
    rec Q2_raw;

    rec Phase;
    rec DeltaPhase;
    rec DeltaPhase_raw;
    rec alpha;
    rec alpha_raw;

    rec Re;
    rec Im;
    rec Re_raw;
    rec Im_raw;

    rec SmoothPeriod;
    rec vmama;
    rec vfama;

    def CorrectionFactor = Phase_Accumulation(price).CorrectionFactor;

    if BarNumber() <= 5
    then {
        Smooth = 0;
        Detrender = 0;

        Period = 0;
        Period_raw = 0;
        Period_cap = 0;
        Period_lim = 0;
        I1 = 0;
        Q1 = 0;
        I2 = 0;
        Q2 = 0;
        jI = 0;
        jQ = 0;
        I2_raw = 0;
        Q2_raw = 0;
        Re = 0;
        Im = 0;
        Re_raw = 0;
        Im_raw = 0;
        SmoothPeriod = 0;
        Phase = 0;
        DeltaPhase = 0;
        DeltaPhase_raw = 0;
        alpha = 0;
        alpha_raw = 0;
        vmama = 0;
        vfama = 0;
    } else {
# Smooth and detrend my smoothed signal:
        Smooth = WMA_Smooth(price);
        Detrender = ( 0.0962 * Smooth
+ 0.5769 * Smooth[2]
- 0.5769 * Smooth[4]
- 0.0962 * Smooth[6] ) * CorrectionFactor;

        Q1 = ( 0.0962 * Detrender
+ 0.5769 * Detrender[2]
- 0.5769 * Detrender[4]
- 0.0962 * Detrender[6] ) * CorrectionFactor;
        I1 = Detrender[3];

        jI = ( 0.0962 * I1
+ 0.5769 * I1[2]
- 0.5769 * I1[4]
- 0.0962 * I1[6] ) * CorrectionFactor;

        jQ = ( 0.0962 * Q1
+ 0.5769 * Q1[2]
- 0.5769 * Q1[4]
- 0.0962 * Q1[6] ) * CorrectionFactor;

# This is the complex conjugate
        I2_raw = I1 - jQ;
        Q2_raw = Q1 + jI;

        I2 = 0.2 * I2_raw + 0.8 * I2_raw[1];
        Q2 = 0.2 * Q2_raw + 0.8 * Q2_raw[1];

        Re_raw = I2 * I2[1] + Q2 * Q2[1];
        Im_raw = I2 * Q2[1] - Q2 * I2[1];

        Re = 0.2 * Re_raw + 0.8 * Re_raw[1];
        Im = 0.2 * Im_raw + 0.8 * Im_raw[1];

# Compute the phase
        if Re != 0 and Im != 0
        then {
            Period_raw = 2 * Double.Pi / ATan(Im / Re);
        } else {
            Period_raw = 0;
        }

        if Period_raw > 1.5 * Period_raw[1]
        then {
            Period_cap = 1.5 * Period_raw[1];
        } else if Period_raw < 0.67 * Period_raw[1] {
            Period_cap = 0.67 * Period_raw[1];
        } else {
            Period_cap = Period_raw;
        }

        if Period_cap < 6
        then {
            Period_lim = 6;
        } else if Period_cap > 50
        then {
            Period_lim = 50;
        } else {
            Period_lim = Period_cap;
        }

        Period = 0.2 * Period_lim + 0.8 * Period_lim[1];
        SmoothPeriod = 0.33 * Period + 0.67 * SmoothPeriod[1];

        if I1 != 0
        then {
            Phase = ATan(Q1 / I1);
        } else if Q1 > 0
        then { # Quadrant 1:
            Phase = Double.Pi / 2;
        } else if Q1 < 0
        then { # Quadrant 4:
            Phase = -Double.Pi / 2;
        } else { # Both numerator and denominator are 0.
            Phase = 0;
        }

        DeltaPhase_raw = Phase[1] - Phase;
        if DeltaPhase_raw < 1
        then {
            DeltaPhase = 1;
        } else {
            DeltaPhase = DeltaPhase_raw;
        }

        alpha_raw = FastLimit / DeltaPhase;
        if alpha_raw < SlowLimit
        then {
            alpha = SlowLimit;
        } else {
            alpha = alpha_raw;
        }
        vmama = alpha * price + (1 - alpha) * vmama[1];
        vfama = 0.5 * alpha * vmama + (1 - 0.5 * alpha) * vfama[1];
    }

    plot MAMA = vmama;
    plot FAMA = vfama;
}


input price2 = hl2;
input FastLimit = 0.5;
input SlowLimit = 0.05;

def MAMA = Ehler_MAMA(price2, FastLimit, SlowLimit).MAMA;
def FAMA = Ehler_MAMA(price2, FastLimit, SlowLimit).FAMA;

def Crossing = Crosses((MAMA < FAMA), yes);
#Crossing.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);

def Crossing1 = Crosses((MAMA > FAMA), yes);
#Crossing1.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);

AddLabel(yes, Concat("MAMA: ", Concat("",
if MAMA > FAMA then "Bull" else "Bear")),

if MAMA > FAMA then Color.GREEN else Color.RED);

##################################
plot C3_MF_Line = (MAMA + FAMA) / 2;
C3_MF_Line.SetPaintingStrategy(PaintingStrategy.LINE);
C3_MF_Line.SetLineWeight(3);
C3_MF_Line.AssignValueColor(if ((priceColor2 == 1) and (price1 > Upper_BandS) and (condition_BandRevDn)) then Color.YELLOW else if ((priceColor2 == -1) and (price1 < Lower_BandS) and (condition_BandRevUp)) then Color.YELLOW else if priceColor2 == -1 then Color.RED  else if (priceColor2 == 1) then Color.GREEN else Color.CURRENT);

def C3_MF_UP = C3_MF_Line > C3_MF_Line[1];
def C3_MF_DN = C3_MF_Line < C3_MF_Line[1];
def priceColor9 = if C3_MF_UP then 1
                 else if C3_MF_DN then -1
                 else priceColor9[1];

def MF_UP = FAMA < MAMA;
def MF_DN = FAMA > MAMA;
def priceColor10 = if MF_UP then 1
                 else if MF_DN then -1
                 else priceColor10[1];

input extension_length_limited_to = 10;
def lastbar = if isnan(close[-1]) and !isnan(close) then barnumber() else double.nan;
def inertline = inertiaall(C3_MF_Line,2);
def EXT_C3_MF = if !IsNaN(close()) then inertline else EXT_C3_MF[1] + ((EXT_C3_MF[1] - EXT_C3_MF[2]) / (2 - 1));
plot extension = if barnumber()<=highestall(lastbar)+ extension_length_limited_to then EXT_C3_MF else double.nan;
extension.SetDefaultColor(Color.white);
####################################################################################################################################################

#EMA's
input length8 = 10;
input length9 = 35;
input show_ema_cloud = yes;

plot AvgExp8 = ExpAverage(price[-displace], length8);
def UPD = AvgExp8[1] < AvgExp8;
AvgExp8.SetStyle(Curve.SHORT_DASH);
#AvgExp8.SetLineWeight(1);

plot AvgExp9 = ExpAverage(price[-displace], length9);
def UPW = AvgExp9[1] < AvgExp9;
AvgExp9.SetStyle(Curve.SHORT_DASH);
#AvgExp9.SetLineWeight(1);

def Below = AvgExp8 < AvgExp9;
def Spark = UPD + UPW + Below;

def UPEMA = AvgExp8[1] < AvgExp8;
def DOWNEMA = AvgExp8[1] > AvgExp8;
AvgExp8.AssignValueColor(if UPEMA then Color.LIGHT_GREEN else if DOWNEMA then Color.RED else Color.YELLOW);

def UPEMA2 = AvgExp9[1] < AvgExp9;
def DOWNEMA2 = AvgExp9[1] > AvgExp9;
AvgExp9.AssignValueColor(if UPEMA2 then Color.LIGHT_GREEN else if DOWNEMA2 then Color.RED else Color.YELLOW);

AddCloud(if show_ema_cloud and (AvgExp9 > AvgExp8) then AvgExp9 else Double.NaN, AvgExp8, Color.LIGHT_RED, Color.CURRENT);
AddCloud(if show_ema_cloud and (AvgExp8 > AvgExp9) then AvgExp8 else Double.NaN, AvgExp9, Color.LIGHT_GREEN, Color.CURRENT);

def UP8 = UPEMA and UPEMA2;
def DOWN8 = DOWNEMA and DOWNEMA2;
def priceColor8 = if UP8 then 1
                 else if DOWN8 then -1
                 else 0;

def UpCalc =  (priceColor == 1) + (priceColor2 == 1) + (priceColor8 == 1) + (priceColor10 == 1);

def CandleColor = if (UpCalc >= 3) then 1
                 else if (UpCalc == 0) then -1
                 else if (priceColor2 == 1) then 1
                 else if (priceColor2 == -1) then -1
                 else CandleColor[1];
AssignPriceColor(if coloredCandlesOn and (CandleColor == 1) then Color.GREEN else if coloredCandlesOn and (CandleColor == -1) then Color.RED else Color.GRAY);

#Labels
def Buy = UP_OS;
def Sell = DOWN_OB;
def conditionLTB = (ConditionK2UP and (Consensus_Level < 0));
def conditionLTS = (ConditionK3DN and (Consensus_Level > 0));
def conditionBO = ((Upper_BandS[1] < Upper_BandS) and (Lower_BandS[1] < Lower_BandS)) and ((Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK));
def conditionBD = ((Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS) and (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK));
def MomentumUP = Consensus_Level[1] < Consensus_Level;
def MomentumDOWN = Consensus_Level[1] > Consensus_Level;

def Squeeze_Signal = !IsNaN(Squeeze_Alert);
def conditionOB = (Consensus_Level >= 12) and (Consensus_Line >= 4);
def conditionOS = (Consensus_Level <= -12) and (Consensus_Line <= -3);

AddLabel(yes, if conditionLTB then "BULLISH_LOOK_To_BUY" else if conditionLTS then "BEARISH_LOOK_TO_SELL" else if conditionK2UP then "TREND_BULLISH" else if conditionK3DN then "TREND_BEARISH" else "TREND_CONSOLIDATION", if conditionLTB then Color.GREEN else if conditionLTS then Color.RED else if conditionK2UP then Color.WHITE else if conditionK3DN then Color.DARK_GRAY else Color.GRAY);

AddLabel(yes, if conditionBD then "BREAKDOWN" else if conditionBO then "BREAKOUT" else "NO_BREAK", if conditionBD then Color.RED else if conditionBO then Color.GREEN else Color.GRAY);

AddLabel(yes, if (Spark == 3) then "SPARK UP = " + Round(Spark, 1) else if (Spark == 0) then  "SPARK DOWN = " + Round(Spark, 1) else "SPARK = " + Round(Spark, 1), if (Spark == 3) then Color.YELLOW else if (Spark == 2) then Color.GREEN else if (Spark == 0) then Color.RED else Color.GRAY);

AddLabel(yes, "SQUEEZE ALERT", if Squeeze_Signal then Color.YELLOW else Color.GRAY);

AddLabel(yes, if MomentumUP then "Consensus_Increasing = " + Round(Consensus_Level, 1) else if MomentumUP or MomentumDOWN and conditionOB then "Consensus_OVERBOUGHT = " + Round(Consensus_Level, 1) else if MomentumDOWN then  "Consensus_Decreasing = " + Round(Consensus_Level, 1) else if MomentumUP or MomentumDOWN and conditionOS then "Consensus_OVERSOLD = " + Round(Consensus_Level, 1) else "Consensus = " + Round(Consensus_Level, 1), if conditionOB then Color.RED else if conditionOS then Color.GREEN else Color.GRAY);

Here is Confirmation Candles v10.
wx6WYDq.png

IATXQlV.png


Code:
#
#Confirmation Candles V.10
#Created 04/15/2021 by Christopher84
#Select the level of agreement among the 15 indicators included.
#Changed 04/19/2021 to V.3 - Removed ChaikinOsc and replaced with STARCBands. Added squeeze alert.
#Changed 04/20/2021 to V.4 - Added Keltner Channel, Labels, and Buy and Sell Zones. Mean Reversion and Breakout Labels added. Reversal_Alert points added.
#Changed 4/22/2021 to V.5 - Removed Buy/Sell clouds. Created new reversal alert buy(gray points) and take profit (red points). Increase factorK.
#Changed 4/23/2021 to V.6 - Refined reversal signals. Fully integrated Super_OB_OS indicator. Fixed candles going yellow if colored_candles is off.
#Changed 4/26/2021 to V.7 - Refined reversal signals and included Keltner Bandwidth. Adjusted Keltner Channel levels.
#Changed 4/27/2021 to V.8 - Improved reversal signals and included support and resistance zones.
#Changed 05/12/2021 to V.9  - dialed in studies to give stronger signals. Removed reversal buy and sell signals with OB/OS signals. Included OB/OS clouds to indicate favorable zones to buy or take profit. Clouds can also indicate nearterm reversals. Cleaned up code.
#Changed 05/20/2021 to V.10 - Removed Pivot Study and replaced with CIP. Reworked Labels to reflect mean reversion Look to Buy/Look to Sell conditions. Removed Mean Reversion Label. Added new label to show the Confirmation_Level and color coded it to show OB/OS conditions.

#Keltner Channel
declare upper;
def displace = 0;
def factorK = 2.0;
def lengthK = 20;
def price = close;
input averageType = AverageType.SIMPLE;
def trueRangeAverageType = AverageType.SIMPLE;
def BulgeLengthK = 150;
def SqueezeLengthK = 150;
def BulgeLengthK2 = 40;
def SqueezeLengthK2 = 40;
def BulgeLengthPrice = 75;
def SqueezeLengthPrice = 75;
def BulgeLengthPrice2 = 20;
def SqueezeLengthPrice2 = 20;

def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1 = price >= Upper_BandK;
def conditionK2 = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK2L = (Upper_BandK[2] < Upper_BandK[1]) and (Lower_BandK[2] < Lower_BandK[1]);
def conditionK3L = (Upper_BandK[3] < Upper_BandK[2]) and (Lower_BandK[3] < Lower_BandK[2]);
def conditionK3 = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);
def BandwidthK = (Upper_BandK - Lower_BandK) / AvgK * 100;
def condition_BWKUP = BandwidthK[1] < BandwidthK;
def condition_BWKDOWN = BandwidthK[1] > BandwidthK;
def BulgeK = Highest(BandwidthK, BulgeLengthK);
def SqueezeK = Lowest(BandwidthK, SqueezeLengthK);
def BulgeK2 = Highest(BandwidthK, BulgeLengthK2);
def SqueezeK2 = Lowest(BandwidthK, SqueezeLengthK2);

plot IntermResistance = Highest(price, BulgeLengthPrice);
IntermResistance.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
plot IntermSupport = Lowest(price, SqueezeLengthPrice);
IntermSupport.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);

plot NearTResistance = Highest(price, BulgeLengthPrice2);
NearTResistance.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
NearTResistance.SetStyle(Curve.SHORT_DASH);
plot NearTSupport = Lowest(price, SqueezeLengthPrice2);
NearTSupport.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
NearTSupport.SetStyle(Curve.SHORT_DASH);

#MACD with Price
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 =  (Intermed[1] <= Intermed) or (NearT >= MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];

def condition5 = CIP_UP;

#EMA_1
def EMA_length = 12;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp2[2] <= AvgExp2);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = (PROSC > 50);# or ((PROSC[1] < PROSC) and PROSC > 40);
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input coloredCandlesOn = yes;
input Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 12;
def Agreement_LevelOS = 3;

def Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionK1 + conditionK2;

def conditionChannel1 = Upper_BandK > price;
def conditionChannel2 = Lower_BandK < price;

def UP = Agreement_Level >= Confirmation_Factor;
def DOWN = Agreement_Level < Confirmation_Factor;

AssignPriceColor(if coloredCandlesOn and UP then Color.LIGHT_GREEN else if coloredCandlesOn and DOWN then Color.RED else Color.CURRENT);

#Additional Signals

#Keltner #2
input showCloud = yes;
def factorK2 = 3.25;
def lengthK2 = 20;

def shiftK2 = factorK2 * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK2);
def averageK2 = MovingAverage(averageType, price, lengthK2);
def AvgK2 = averageK2[-displace];
def Upper_BandK2 = averageK2[-displace] + shiftK2[-displace];
def Lower_BandK2 = averageK2[-displace] - shiftK2[-displace];

def condition_BandRevDn = (Upper_BandS > Upper_BandK2);
def condition_BandRevUp = (Lower_BandS < Lower_BandK2);

AddCloud(if showCloud and condition_BandRevUp then Lower_BandK2 else Double.NaN, Lower_BandS, Color.LIGHT_GREEN, color.CURRENT);
AddCloud(if showCloud and condition_BandRevDn then Upper_BandS else Double.NaN, Upper_BandK2, Color.LIGHT_Red, Color.CURRENT);

#Super_OB/OS Signal
def OB_Level = conditionOB1 + conditionOB2 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS2 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

def Consensus_Line = OB_Level - OS_Level;
def Zero_Line = 0;
def Super_OB = 4;
def Super_OS = -3;

def DOWN_OB = (Agreement_Level > Agreement_LevelOB) and (Consensus_Line > Super_OB);
def UP_OS = (Agreement_Level < Agreement_LevelOS) and (Consensus_Line < Super_OS);

def OS_Buy = UP_OS;
def OB_Sell = DOWN_OB;
def neutral = Consensus_Line < Super_OB and Consensus_Line > Super_OS;

#AddVerticalLine (OS_Buy and !OS_Buy[1], close, Color.GREEN, Curve.SHORT_DASH);
#AddVerticalLine (Neutral and !neutral[1], close, Color.Gray, Curve.SHORT_DASH);
#AddVerticalLine (OB_Sell and OB_Sell and !OB_Sell[1], close, Color.RED, Curve.SHORT_DASH);

def Buy_Opportnity = if OS_Buy then Double.POSITIVE_INFINITY else Double.NEGATIVE_INFINITY;
#AddCloud(Buy_Opportnity, Neutral, Color.LIGHT_GREEN, Color.LIGHT_RED);
def Sell_Opportnity = if OB_Sell then Double.POSITIVE_INFINITY else Double.NEGATIVE_INFINITY;
#AddCloud(Sell_Opportnity, Neutral, Color.LIGHT_RED, Color.LIGHT_RED);

plot OB_Signal = Upper_BandS crosses above IntermResistance;
OB_Signal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
OB_Signal.SetLineWeight(3);
OB_Signal.SetDefaultColor(Color.RED);

plot OS_Signal = (condition_BandRevUP) and (Lower_BandS crosses below IntermSupport);
OS_Signal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
OS_Signal.SetLineWeight(3);
OS_Signal.SetDefaultColor(Color.GREEN);

#Squeeze Alert
def length = 20;
def BulgeLength = 150;
def SqueezeLength = 150;
def upperBandBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).UpperBand;
def lowerBandBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).LowerBand;
def midLineBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).MidLine;
def Bandwidth = (upperBandBB - lowerBandBB) / midLineBB * 100;
def Bulge = Highest(Bandwidth, BulgeLength);
def Squeeze = Lowest(Bandwidth, SqueezeLength);

plot Squeeze_Alert = Bandwidth <= Squeeze;
Squeeze_Alert.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
Squeeze_Alert.SetLineWeight(3);
Squeeze_Alert.SetDefaultColor(Color.YELLOW);

#Trend Signals
#Bollinger_Bands2
def lengthBB = 10;
def Num_Dev_DnBB = -0.8;
def Num_Dev_upBB = 0.8;

def price1 = open;
def sDev = StDev(data = price[-displace], length = lengthBB);
def MidLineBB2 = MovingAverage(averageType, data = price[-displace], length = lengthBB);
def LowerBandBB2 = MidLineBB2 + Num_Dev_DnBB * sDev;
def UpperBandBB2 = MidLineBB2 + Num_Dev_upBB * sDev;

plot UPConfirmSignal = Agreement_Level crosses above Confirmation_Factor;
UPConfirmSignal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);
UPConfirmSignal.SetLineWeight(1);
UPConfirmSignal.SetDefaultColor(Color.GREEN);

plot DOWNConfirmSignal = Agreement_Level crosses below Confirmation_Factor;
DOWNConfirmSignal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);
DOWNConfirmSignal.SetLineWeight(1);
DOWNConfirmSignal.SetDefaultColor(Color.RED);

#Labels
def Buy = UP_OS;
def Sell = DOWN_OB;
AddLabel(yes, "Look_To_Buy", if (ConditionK2 and (Agreement_Level < Confirmation_Factor)) then Color.GREEN else Color.GRAY);
AddLabel(yes, "Look_To_Sell", if (ConditionK3 and (Agreement_Level > Confirmation_Factor)) then Color.RED else Color.GRAY);

def MomentumUP = Agreement_Level[1] < Agreement_Level;
def MomentumDOWN = Agreement_Level[1] > Agreement_Level;
AddLabel(yes, "Increasing Momentum", if MomentumUP then Color.GREEN else Color.GRAY);
AddLabel(yes, "Decreasing Momentum", if MomentumDOWN then Color.RED else Color.GRAY);

def conditionBO = ((Upper_BandS[1] < Upper_BandS) and (Lower_BandS[1] < Lower_BandS)) and ((Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK));
AddLabel(yes, "BREAKOUT", if conditionBO then Color.GREEN else Color.GRAY);

def conditionBD = ((Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS) and (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK));
AddLabel(yes, "BREAKDOWN", if conditionBD then Color.RED else Color.GRAY);

def Squeeze_Signal = Squeeze_Alert;
AddLabel(yes, "SQUEEZE ALERT", if Squeeze_Signal then Color.YELLOW else Color.GRAY);

AddLabel(yes, "Confirmation_Level = " + round(Agreement_Level,1), if ((Agreement_Level >= 12) and (Consensus_Line >= 4)) then Color.RED else if ((Agreement_Level <= 3) and (Consensus_Line <= -3)) then Color.Green else color.Gray);

Here is the Confirmation Candles lower study.
Code:
#Confirmation Candles Lower V.10
#Created 04/15/2021 by Christopher84
#Select the level of agreement among the 14 indicators included.
#Last changed 04/20/2021 to V.3 - Removed ChaikinOsc and replaced with STARCBands. Adjusted levels to match upper study. Added OB/OS levels.
#Changed 05/12/2021 to V.9  - dialed in studies to give stronger signals.
#Changed 05/20/2021 to V.10 - Removed Pivot Study and replaced with CIP.

#Keltner Channel
declare lower;
def displace = 0;
def factorK = 2.0;
def lengthK = 20;
def price = close;
input averageType = AverageType.SIMPLE;
input trueRangeAverageType = AverageType.SIMPLE;

def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionKup = price >= Upper_BandK;
def conditionKdown = price <= Lower_BandK;

#MACD with Price
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;
switch (MACD_AverageType) {
case SMA:
Value = Average(price, fastLength) - Average(price, slowLength);
Avg = Average(Value, MACDLength);
case EMA:
Value = fastEMA - slowEMA;
Avg = ExpAverage(Value, MACDLength);}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def conditionRSI_OB = RSI > RSI_OB;
def conditionRSI_OS = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(moneyflow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def conditionMFI_OB = MoneyFlowIndex > MFIover_Bought;
def conditionMFI_OS = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT = MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def conditionFOB = Intermed > FOB;
def conditionFOS = Intermed < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;

#EMA_1
def EMA_length = 12;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp2[2] <= AvgExp2);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= zeroline;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def conditionPFE_OB = PFE > UpperLevel;
def conditionPFE_OS = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.Simple;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def conditionBBPB_OB = PercentB > BBPB_OB;
def conditionBBPB_OS = PercentB < BBPB_OS;

#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price=high, length=ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price=low, length=ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def conditionPROSC_OB = PROSC > PROSC_OB;
def conditionPROSC_OS = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
plot Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionKup;

Agreement_Level.AssignValueColor(
if Agreement_Level > Agreement_Level[1] and Agreement_Level >= Confirmation_Factor then Color.LIGHT_GREEN
else if Agreement_Level < Agreement_Level[1] and Agreement_Level >= Confirmation_Factor then Color.LIGHT_GREEN
else if Agreement_Level < Agreement_Level[1] and Agreement_Level < Confirmation_Factor then Color.RED else
if Agreement_Level > Agreement_Level[1] and Agreement_Level < Confirmation_Factor then Color.DARK_RED
else Color.GRAY);

plot Factor_Line = Confirmation_Factor;
Factor_Line.SetStyle(Curve.SHORT_DASH);
Factor_Line.SetLineWeight(1);
Factor_Line.SetDefaultColor(Color.Gray);

plot OB_Level = 12;
OB_Level.SetPaintingStrategy(PaintingStrategy.LINE);
OB_Level.SetLineWeight(1);
OB_Level.SetDefaultColor(Color.RED);

plot OS_Level = 3;
OS_Level.SetPaintingStrategy(PaintingStrategy.LINE);
OS_Level.SetLineWeight(1);
OS_Level.SetDefaultColor(Color.LIGHT_GREEN);

AddCloud(Agreement_Level, OB_Level, Color.RED, Color.CURRENT);
AddCloud(Agreement_Level, OS_Level, Color.CURRENT, Color.LIGHT_GREEN);

(Confirmation Consensus Candles) C3 v5

This is a new candle painting indicator C3, that I have adapted from the original Confirmation Candles. The main difference between the two indicators is that Confirmation Candles confirms only positive factors for upward price movement, and C3 utilizes both positive and negative factors of price movement and weighs them against each other to derive the Consensus Level. There is a histagram style lower study that goes with it. Check it out! Big thanks to everyone trying out my work and giving feedback.
nOD1krz.png

5QygBoC.png

wPdK4Ht.png

Code:
# (Consensus Confirmation Candles) C3 v6
#
# Created 04/28/2021 by Christopher84
# Based off of the Confirmation Candles Study. Main difference is that CC Candles weigh factors of positive
# and negative price movement to create the Consensus_Level. The Consensus_Level is considered positive if
# above zero and negative if below zero.
#
# v2   - 05/11/2021 - dialed in studies to give stronger signals. Removed reversal buy and sell signals with
#                     OB/OS signals. Included OB/OS clouds to indicate favorable zones to buy or take profit.
#                     Clouds can also indicate nearterm reversals. Cleaned up code.
# v3   - 05/20/2021 - Removed Pivot Study and replaced with CIP. Reworked Labels to reflect mean reversion Look
#                     to Buy/Look to Sell conditions. Removed Mean Reversion Label. Added new label to show the
#                     Confirmation_Level and color coded it to show OB/OS conditions.
# BETA - 05/21/2021 - (barbaros) Consensus Level filter set to above 4 and below -4
# v4   - 05/24/2021 - Consensus Level filter changed to above 6 and below -6
# BETA - 05/29/2021 - (barbaros) Bug fixes
# v5   - 06/01/2021 - Consolidated labels. Added new squeeze condition based on NearTSupport and NearTResistance.
# v5   - 06/04/2021 - Included Ichimoku cloud.
# v6   - 06/09/2021 - Added Arrows using Confirmation_Factor

#Keltner Channel
declare upper;
def displace = 0;
def factorK = 2.0;
def lengthK = 20;
def price = close;
input averageType = AverageType.SIMPLE;
def trueRangeAverageType = AverageType.SIMPLE;
def BulgeLengthPrice = 75;
def SqueezeLengthPrice = 75;
def BulgeLengthPrice2 = 20;
def SqueezeLengthPrice2 = 20;
def BulgeLengthPrice3 = 12;
def SqueezeLengthPrice3 = 12;

def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1UP = price >= Upper_BandK;
def conditionK2UP = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK3DN = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);
def conditionK4DN = price < Lower_BandK;
def BandwidthK = (Upper_BandK - Lower_BandK) / AvgK * 100;

plot IntermResistance = Highest(price, BulgeLengthPrice);
IntermResistance.AssignValueColor(if (conditionK2UP) then Color.GREEN else if (conditionK3DN) then Color.RED else Color.GRAY);
plot IntermSupport = Lowest(price, SqueezeLengthPrice);
IntermSupport.AssignValueColor(if (conditionK2UP) then Color.GREEN else if (conditionK3DN) then Color.RED else Color.GRAY);

plot NearTResistance = Highest(price, BulgeLengthPrice2);
NearTResistance.AssignValueColor(if (conditionK2UP) then Color.GREEN else if (conditionK3DN) then Color.RED else Color.GRAY);
NearTResistance.SetStyle(Curve.SHORT_DASH);
plot NearTSupport = Lowest(price, SqueezeLengthPrice2);
NearTSupport.AssignValueColor(if (conditionK2UP) then Color.GREEN else if (conditionK3DN) then Color.RED else Color.GRAY);
NearTSupport.SetStyle(Curve.SHORT_DASH);

def NearTResistance1 = Highest(price, BulgeLengthPrice3);
def NearTSupport1 = Lowest(price, SqueezeLengthPrice3);

#MACD with Price
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;
def condition1D = Value[1] > Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def condition2D = (RSI[3] > RSI) is true or (RSI < 20) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def condition3D = (MoneyFlowIndex[2] > MoneyFlowIndex) is true or (MoneyFlowIndex < 20) is true;
def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def condition4D = (Intermed[1] > Intermed) or (NearT < MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;
def condition5D = CIP_DOWN;

#EMA_1
def EMA_length = 8;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);
def condition6D = (price < AvgExp) and (AvgExp[2] > AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp2[2] <= AvgExp);
def condition7D = (price < AvgExp2) and (AvgExp2[2] > AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;
def condition8D = Osc < ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;
def condition9D = Periods < 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def condition10D = PFE < 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def condition11D = PercentB < HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);
def condition12D = (Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0);
def condition13D = (KVOH < 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def condition14D = PROSC < 50;
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input coloredCandlesOn = yes;
input Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 10;
def Agreement_LevelOS = -10;

def Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionK1UP + conditionK2UP;

def Agreement_LevelD = (condition1D + condition2D + condition3D + condition4D + condition5D + condition6D + condition7D + condition8D + condition9D + condition10D + condition11D + condition12D + condition13D + condition14D + conditionK3DN + conditionK4DN);

def Consensus_Level = Agreement_Level - Agreement_LevelD;

def UP = Consensus_Level >= 6;
def DOWN = Consensus_Level < -6;

def priceColor = if UP then 1
                 else if DOWN then -1
                 else priceColor[1];

AssignPriceColor(if coloredCandlesOn and priceColor == 1 then Color.LIGHT_GREEN else if coloredCandlesOn and priceColor == -1 then Color.RED else Color.CURRENT);

#Additional Signals
#Keltner #2
input showCloud = yes;
def factorK2 = 3.25;
def lengthK2 = 20;

def shiftK2 = factorK2 * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK2);
def averageK2 = MovingAverage(averageType, price, lengthK2);
def AvgK2 = averageK2[-displace];
def Upper_BandK2 = averageK2[-displace] + shiftK2[-displace];
def Lower_BandK2 = averageK2[-displace] - shiftK2[-displace];
def condition_BandRevDn = (Upper_BandS > Upper_BandK2);
def condition_BandRevUp = (Lower_BandS < Lower_BandK2);

AddCloud(if showCloud and condition_BandRevUp then Lower_BandK2 else Double.NaN,  Lower_BandS,  Color.LIGHT_GREEN,  Color.CURRENT);
AddCloud(if showCloud and condition_BandRevDn then Upper_BandS else Double.NaN,  Upper_BandK2,  Color.LIGHT_RED,  Color.CURRENT);

#Super_OB/OS Signal
def OB_Level = conditionOB1 + conditionOB2 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS2 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

def Consensus_Line = OB_Level - OS_Level;
def Zero_Line = 0;
def Super_OB = 4;
def Super_OS = -4;

def DOWN_OB = (Agreement_Level > Agreement_LevelOB) and (Consensus_Line > Super_OB);
def UP_OS = (Agreement_Level < Agreement_LevelOS) and (Consensus_Line < Super_OS);

def OS_Buy = UP_OS;
def OB_Sell = DOWN_OB;
def neutral = Consensus_Line < Super_OB and Consensus_Line > Super_OS;

#AddVerticalLine (OS_Buy and !OS_Buy[1], close, Color.GREEN, Curve.SHORT_DASH);
#AddVerticalLine (Neutral and !neutral[1], close, Color.Gray, Curve.SHORT_DASH);
#AddVerticalLine (OB_Sell and OB_Sell and !OB_Sell[1], close, Color.RED, Curve.SHORT_DASH);

def Buy_Opportnity = if OS_Buy then Double.POSITIVE_INFINITY else Double.NEGATIVE_INFINITY;
#AddCloud(Buy_Opportnity, Neutral, Color.LIGHT_GREEN, Color.LIGHT_RED);
def Sell_Opportnity = if OB_Sell then Double.POSITIVE_INFINITY else Double.NEGATIVE_INFINITY;
#AddCloud(Sell_Opportnity, Neutral, Color.LIGHT_RED, Color.LIGHT_RED);

plot OB_Signal = Upper_BandS crosses above IntermResistance;
OB_Signal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
OB_Signal.SetLineWeight(3);
OB_Signal.SetDefaultColor(Color.RED);

plot OS_Signal = (condition_BandRevUp) and (Lower_BandS crosses below IntermSupport);
OS_Signal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
OS_Signal.SetLineWeight(3);
OS_Signal.SetDefaultColor(Color.GREEN);

#Squeeze Alert
def BandwidthC3 = (NearTResistance1 - NearTSupport1);
def IntermResistance2 = Highest(BandwidthC3,BulgeLengthPrice);
def IntermSupport2 = Lowest(BandwidthC3, SqueezeLengthPrice);
def sqzTrigger = BandwidthC3 <= IntermSupport2;
def sqzLevel = if !sqzTrigger[1] and sqzTrigger then hl2
               else if !sqzTrigger then Double.NaN
               else sqzLevel[1];

plot Squeeze_Alert = sqzLevel;
Squeeze_Alert.SetPaintingStrategy(PaintingStrategy.POINTS);
Squeeze_Alert.SetLineWeight(3);
Squeeze_Alert.SetDefaultColor(Color.YELLOW);

#Trend Signals
plot UPConfirmSignal = Agreement_Level crosses above Confirmation_Factor;
UPConfirmSignal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);
UPConfirmSignal.SetLineWeight(1);
UPConfirmSignal.SetDefaultColor(Color.GREEN);

plot DOWNConfirmSignal = Agreement_Level crosses below Confirmation_Factor;
DOWNConfirmSignal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);
DOWNConfirmSignal.SetLineWeight(1);
DOWNConfirmSignal.SetDefaultColor(Color.RED);

#Bollinger_Bands2
def lengthBB = 10;
def Num_Dev_DnBB = -0.8;
def Num_Dev_upBB = 0.8;

def price1 = open;
def sDev = StDev(data = price[-displace], length = lengthBB);
def MidLineBB2 = MovingAverage(averageType, data = price[-displace], length = lengthBB);
def LowerBandBB2 = MidLineBB2 + Num_Dev_DnBB * sDev;
def UpperBandBB2 = MidLineBB2 + Num_Dev_upBB * sDev;

input tenkan_period = 9;
input kijun_period = 26;
input show_Ichimoku_Cloud = yes;

def Tenkan = (Highest(high, tenkan_period) + Lowest(low, tenkan_period)) / 2;
def Kijun = (Highest(high, kijun_period) + Lowest(low, kijun_period)) / 2;
def "Span A" = (Tenkan[kijun_period] + Kijun[kijun_period]) / 2;
def "Span B" = (Highest(high[kijun_period], 2 * kijun_period) + Lowest(low[kijun_period], 2 * kijun_period)) / 2;
def Chikou = close[-kijun_period];

AddCloud(if show_Ichimoku_Cloud and "Span A" then "Span A" else Double.NaN, "Span B",  Color.WHITE,  Color.GRAY);
#AddCloud("Span A", "Span B", color.WHITE, color.GRAY);

#Labels
def Buy = UP_OS;
def Sell = DOWN_OB;
def conditionLTB = (ConditionK2UP and (Consensus_Level < 0));
def conditionLTS = (ConditionK3DN and (Consensus_Level > 0));
def conditionBO = ((Upper_BandS[1] < Upper_BandS) and (Lower_BandS[1] < Lower_BandS)) and ((Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK));
def conditionBD = ((Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS) and (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK));
def MomentumUP = Consensus_Level[1] < Consensus_Level;
def MomentumDOWN = Consensus_Level[1] > Consensus_Level;
def Squeeze_Signal = !isNaN(Squeeze_Alert);
def conditionOB = (Consensus_Level >= 12) and (Consensus_Line >= 4);
def conditionOS = (Consensus_Level <= -12) and (Consensus_Line <= -3);

AddLabel(yes, if conditionLTB then "BULLISH_LOOK_To_BUY" else if conditionLTS then "BEARISH_LOOK_TO_SELL" else if conditionK2UP then "TREND_BULLISH" else if conditionK3DN then "TREND_BEARISH" else "TREND_CONSOLIDATION", if conditionLTB then Color.GREEN else if conditionLTS then Color.Red else if conditionK2UP then Color.WHITE else if conditionK3DN then Color.DARK_GRAY else Color.GRAY);

AddLabel(yes, if conditionBD then "BREAKDOWN" else if conditionBO then "BREAKOUT" else "NO_BREAK", if conditionBD then Color.RED else if conditionBO then Color.Green else Color.Gray);

AddLabel(yes, "SQUEEZE ALERT", if Squeeze_Signal then Color.YELLOW else Color.GRAY);

AddLabel(yes, if MomentumUP then "Consensus_Increasing = " + round(Consensus_Level,1) else if MomentumUP or MomentumDOWN and conditionOB then "Consensus_OVERBOUGHT = " + round(Consensus_Level,1) else if MomentumDOWN then  "Consensus_Decreasing = " + round(Consensus_Level,1) else if MomentumUP or MomentumDOWN and conditionOS then "Consensus_OVERSOLD = " + round(Consensus_Level,1)else "Consensus = " + round(Consensus_Level,1), if conditionOB then Color.RED else if conditionOS then Color.Green else color.GRAY);

For those of you that trade FOREX or the SPX, here is a modified version that will function on those instruments.
Code:
# (Consensus Confirmation Candles) C3 v5 FOREX & SPX Compatible
#
# Created 04/28/2021 by Christopher84
# Based off of the Confirmation Candles Study. Main difference is that CC Candles weigh factors of positive
# and negative price movement to create the Consensus_Level. The Consensus_Level is considered positive if
# above zero and negative if below zero.
#
# v2   - 05/11/2021 - dialed in studies to give stronger signals. Removed reversal buy and sell signals with
#                     OB/OS signals. Included OB/OS clouds to indicate favorable zones to buy or take profit.
#                     Clouds can also indicate nearterm reversals. Cleaned up code.
# v3   - 05/20/2021 - Removed Pivot Study and replaced with CIP. Reworked Labels to reflect mean reversion Look
#                     to Buy/Look to Sell conditions. Removed Mean Reversion Label. Added new label to show the
#                     Confirmation_Level and color coded it to show OB/OS conditions.
# BETA - 05/21/2021 - (barbaros) Consensus Level filter set to above 4 and below -4
# v4   - 05/24/2021 - Consensus Level filter changed to above 6 and below -6
# BETA - 05/29/2021 - (barbaros) Bug fixes
# v5   - 06/01/2021 - Consolidated labels. Added new squeeze condition based on NearTSupport and NearTResistance.
# BETA - 06/02/2021 - Modified study set to be compatable with FOREX and SPX.
# v6   - 06/09/2021 - Modified to include Confirmation Arrows
#Keltner Channel
declare upper;
def displace = 0;
def factorK = 2.0;
def lengthK = 20;
def price = close;
input averageType = AverageType.SIMPLE;
def trueRangeAverageType = AverageType.SIMPLE;
def BulgeLengthK = 250;
def SqueezeLengthK = 250;
def BulgeLengthK2 = 150;
def SqueezeLengthK2 = 150;
def BulgeLengthPrice = 75;
def SqueezeLengthPrice = 75;
def BulgeLengthPrice2 = 20;
def SqueezeLengthPrice2 = 20;
def BulgeLengthPrice3 = 12;
def SqueezeLengthPrice3 = 12;

def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1UP = price >= Upper_BandK;
def conditionK2UP = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK3DN = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);
def conditionK4DN = price < Lower_BandK;

def BandwidthK = (Upper_BandK - Lower_BandK) / AvgK * 100;
def BandwidthKS = (Bandwidthk[2]+ Bandwidthk[1] + BandwidthK) / 3;
def BulgeK = Highest(BandwidthKS, BulgeLengthK);
def SqueezeK = Lowest(BandwidthKS, SqueezeLengthK);
def BulgeK2 = Highest(BandwidthKS, BulgeLengthK2);
def SqueezeK2 = Lowest(BandwidthKS, SqueezeLengthK2);
def condition_Keltner_Squeeze = BandwidthKS <= SqueezeK;

plot IntermResistance = Highest(price, BulgeLengthPrice);
IntermResistance.AssignValueColor(if (conditionK2UP) then Color.GREEN else if (conditionK3DN) then Color.RED else Color.GRAY);
plot IntermSupport = Lowest(price, SqueezeLengthPrice);
IntermSupport.AssignValueColor(if (conditionK2UP) then Color.GREEN else if (conditionK3DN) then Color.RED else Color.GRAY);

plot NearTResistance = Highest(price, BulgeLengthPrice2);
NearTResistance.AssignValueColor(if (conditionK2UP) then Color.GREEN else if (conditionK3DN) then Color.RED else Color.GRAY);
NearTResistance.SetStyle(Curve.SHORT_DASH);
plot NearTSupport = Lowest(price, SqueezeLengthPrice2);
NearTSupport.AssignValueColor(if (conditionK2UP) then Color.GREEN else if (conditionK3DN) then Color.RED else Color.GRAY);
NearTSupport.SetStyle(Curve.SHORT_DASH);

def NearTResistance1 = Highest(price, BulgeLengthPrice3);
def NearTSupport1 = Lowest(price, SqueezeLengthPrice3);

#MACD with Price
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;
def condition1D = Value[1] > Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def condition2D = (RSI[3] > RSI) is true or (RSI < 20) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
#def MFI_Length = 14;
#def MFIover_Sold = 20;
#def MFIover_Bought = 80;
#def movingAvgLength = 1;
#def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
#def MFIOverBought = MFIover_Bought;
#def MFIOverSold = MFIover_Sold;

#def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
#def condition3D = (MoneyFlowIndex[2] > MoneyFlowIndex) is true or (MoneyFlowIndex < 20) is true;
#def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
#def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def condition4D = (Intermed[1] > Intermed) or (NearT < MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;
def condition5D = CIP_DOWN;

#EMA_1
def EMA_length = 8;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);
def condition6D = (price < AvgExp) and (AvgExp[2] > AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp2[2] <= AvgExp);
def condition7D = (price < AvgExp2) and (AvgExp2[2] > AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;
def condition8D = Osc < ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;
def condition9D = Periods < 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def condition10D = PFE < 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def condition11D = PercentB < HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);
def condition12D = (Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS);

#Klinger Histogram
#def Klinger_Length = 13;
#def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
#def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
#def condition13 = (KVOH > 0);
#def condition13D = (KVOH < 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def condition14D = PROSC < 50;
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input coloredCandlesOn = yes;
input Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 10;
def Agreement_LevelOS = -10;

def Agreement_Level = condition1 + condition2 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition14 + conditionK1UP + conditionK2UP;

def Agreement_LevelD = condition1D + condition2D + condition4D + condition5D + condition6D + condition7D + condition8D + condition9D + condition10D + condition11D + condition12D + condition14D + conditionK3DN + conditionK4DN;

def Consensus_Level = Agreement_Level - Agreement_LevelD;

def UP = Consensus_Level >= 4;
def DOWN = Consensus_Level < -4;

def priceColor = if UP then 1
                 else if DOWN then -1
                 else priceColor[1];

AssignPriceColor(if coloredCandlesOn and priceColor == 1 then Color.LIGHT_GREEN else if coloredCandlesOn and priceColor == -1 then Color.RED else Color.CURRENT);

#Additional Signals
#Keltner #2
input showCloud = yes;
def factorK2 = 3.25;
def lengthK2 = 20;

def shiftK2 = factorK2 * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK2);
def averageK2 = MovingAverage(averageType, price, lengthK2);
def AvgK2 = averageK2[-displace];
def Upper_BandK2 = averageK2[-displace] + shiftK2[-displace];
def Lower_BandK2 = averageK2[-displace] - shiftK2[-displace];
def condition_BandRevDn = (Upper_BandS > Upper_BandK2);
def condition_BandRevUp = (Lower_BandS < Lower_BandK2);

AddCloud(if showCloud and condition_BandRevUp then Lower_BandK2 else Double.NaN,  Lower_BandS,  Color.LIGHT_GREEN,  Color.CURRENT);
AddCloud(if showCloud and condition_BandRevDn then Upper_BandS else Double.NaN,  Upper_BandK2,  Color.LIGHT_RED,  Color.CURRENT);

#Super_OB/OS Signal
def OB_Level = conditionOB1 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

def Consensus_Line = OB_Level - OS_Level;
def Zero_Line = 0;
def Super_OB = 4;
def Super_OS = -4;

def DOWN_OB = (Agreement_Level > Agreement_LevelOB) and (Consensus_Line > Super_OB);
def UP_OS = (Agreement_Level < Agreement_LevelOS) and (Consensus_Line < Super_OS);

def OS_Buy = UP_OS;
def OB_Sell = DOWN_OB;
def neutral = Consensus_Line < Super_OB and Consensus_Line > Super_OS;

#AddVerticalLine (OS_Buy and !OS_Buy[1], close, Color.GREEN, Curve.SHORT_DASH);
#AddVerticalLine (Neutral and !neutral[1], close, Color.Gray, Curve.SHORT_DASH);
#AddVerticalLine (OB_Sell and OB_Sell and !OB_Sell[1], close, Color.RED, Curve.SHORT_DASH);

def Buy_Opportnity = if OS_Buy then Double.POSITIVE_INFINITY else Double.NEGATIVE_INFINITY;
#AddCloud(Buy_Opportnity, Neutral, Color.LIGHT_GREEN, Color.LIGHT_RED);
def Sell_Opportnity = if OB_Sell then Double.POSITIVE_INFINITY else Double.NEGATIVE_INFINITY;
#AddCloud(Sell_Opportnity, Neutral, Color.LIGHT_RED, Color.LIGHT_RED);

plot OB_Signal = Upper_BandS crosses above IntermResistance;
OB_Signal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
OB_Signal.SetLineWeight(3);
OB_Signal.SetDefaultColor(Color.RED);

plot OS_Signal = (condition_BandRevUp) and (Lower_BandS crosses below IntermSupport);
OS_Signal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
OS_Signal.SetLineWeight(3);
OS_Signal.SetDefaultColor(Color.GREEN);

#Squeeze Alert
def length = 20;
def BulgeLength = 150;
def SqueezeLength = 150;
def upperBandBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).UpperBand;
def lowerBandBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).LowerBand;
def midLineBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).MidLine;
def Bandwidth = (upperBandBB - lowerBandBB) / midLineBB * 100;
def Bulge = Highest(Bandwidth, BulgeLength);
def Squeeze = Lowest(Bandwidth, SqueezeLength);

def BandwidthC3 = (NearTResistance1 - NearTSupport1);

def IntermResistance2 = Highest(BandwidthC3,BulgeLengthPrice);
def IntermSupport2 = Lowest(BandwidthC3, SqueezeLengthPrice);
#def NearTResistance2 = Highest(BandwidthC3, BulgeLengthPrice2);
#def NearTSupport2 = Lowest(BandwidthC3, SqueezeLengthPrice2);

def sqzTrigger = BandwidthC3 <= IntermSupport2;
def sqzLevel = if !sqzTrigger[1] and sqzTrigger then hl2
               else if !sqzTrigger then Double.NaN
               else sqzLevel[1];

plot Squeeze_Alert = sqzLevel;
Squeeze_Alert.SetPaintingStrategy(PaintingStrategy.POINTS);
Squeeze_Alert.SetLineWeight(3);
Squeeze_Alert.SetDefaultColor(Color.YELLOW);

#Trend Signals
plot UPConfirmSignal = Agreement_Level crosses above Confirmation_Factor;
UPConfirmSignal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);
UPConfirmSignal.SetLineWeight(1);
UPConfirmSignal.SetDefaultColor(Color.GREEN);

plot DOWNConfirmSignal = Agreement_Level crosses below Confirmation_Factor;
DOWNConfirmSignal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);
DOWNConfirmSignal.SetLineWeight(1);
DOWNConfirmSignal.SetDefaultColor(Color.RED);
#Bollinger_Bands2
def lengthBB = 10;
def Num_Dev_DnBB = -0.8;
def Num_Dev_upBB = 0.8;

def price1 = open;
def sDev = StDev(data = price[-displace], length = lengthBB);
def MidLineBB2 = MovingAverage(averageType, data = price[-displace], length = lengthBB);
def LowerBandBB2 = MidLineBB2 + Num_Dev_DnBB * sDev;
def UpperBandBB2 = MidLineBB2 + Num_Dev_upBB * sDev;

#Labels
def Buy = UP_OS;
def Sell = DOWN_OB;
def conditionLTB = (ConditionK2UP and (Consensus_Level < 0));
def conditionLTS = (ConditionK3DN and (Consensus_Level > 0));
def conditionBO = ((Upper_BandS[1] < Upper_BandS) and (Lower_BandS[1] < Lower_BandS)) and ((Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK));
def conditionBD = ((Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS) and (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK));
def MomentumUP = Consensus_Level[1] < Consensus_Level;
def MomentumDOWN = Consensus_Level[1] > Consensus_Level;
def Squeeze_Signal = !isNaN(Squeeze_Alert);
def conditionOB = (Consensus_Level >= 12) and (Consensus_Line >= 4);
def conditionOS = (Consensus_Level <= -12) and (Consensus_Line <= -3);

AddLabel(yes, if conditionLTB then "BULLISH_LOOK_To_BUY" else if conditionLTS then "BEARISH_LOOK_TO_SELL" else if conditionK2UP then "TREND_BULLISH" else if conditionK3DN then "TREND_BEARISH" else "TREND_CONSOLIDATION", if conditionLTB then Color.GREEN else if conditionLTS then Color.Red else if conditionK2UP then Color.WHITE else if conditionK3DN then Color.DARK_GRAY else Color.GRAY);

AddLabel(yes, if conditionBD then "BREAKDOWN" else if conditionBO then "BREAKOUT" else "NO_BREAK", if conditionBD then Color.RED else if conditionBO then Color.Green else Color.Gray);

AddLabel(yes, "SQUEEZE ALERT", if Squeeze_Signal then Color.YELLOW else Color.GRAY);

AddLabel(yes, if MomentumUP then "Consensus_Increasing = " + round(Consensus_Level,1) else if MomentumUP or MomentumDOWN and conditionOB then "Consensus_OVERBOUGHT = " + round(Consensus_Level,1) else if MomentumDOWN then  "Consensus_Decreasing = " + round(Consensus_Level,1) else if MomentumUP or MomentumDOWN and conditionOS then "Consensus_OVERSOLD = " + round(Consensus_Level,1)else "Consensus = " + round(Consensus_Level,1), if conditionOB then Color.RED else if conditionOS then Color.Green else color.GRAY);
Here's the lower study.
gWWYe5M.png

Code:
#CC Candles Lower V.2
#Created 04/28/2021 by Christopher84
#Modified to V.2 05/11/2021 - dialed in studies to give stronger signals. Included OB/OS Clouds and cleaned up code.
#Changed 05/20/2021 to V.3 - Removed Pivot Study and replaced with CIP.

#Keltner Channel
declare lower;
def displace = 0;
def factorK = 2.0;
def lengthK = 20;
def price = close;
input averageType = AverageType.SIMPLE;
def trueRangeAverageType = AverageType.SIMPLE;
def BulgeLengthK = 150;
def SqueezeLengthK = 150;
def BulgeLengthK2 = 40;
def SqueezeLengthK2 = 40;
def BulgeLengthPrice = 75;
def SqueezeLengthPrice = 75;
def BulgeLengthPrice2 = 20;
def SqueezeLengthPrice2 = 20;
def BulgeLengthCC = 40;
def SqueezeLengthCC = 40;
def BulgeLengthCC2 = 8;
def SqueezeLengthCC2 = 8;

def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1 = price >= Upper_BandK;
def conditionK2 = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK3D = price < Lower_BandK;
def conditionK4D = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);

def conditionK2L = (Upper_BandK[2] < Upper_BandK[1]) and (Lower_BandK[2] < Lower_BandK[1]);
def conditionK3L = (Upper_BandK[3] < Upper_BandK[2]) and (Lower_BandK[3] < Lower_BandK[2]);
def conditionK3 = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);

def BandwidthK = (Upper_BandK - Lower_BandK) / AvgK * 100;
def condition_BWKUP = BandwidthK[1] < BandwidthK;
def condition_BWKDOWN = BandwidthK[1] > BandwidthK;
def BulgeK = Highest(BandwidthK, BulgeLengthK);
def SqueezeK = Lowest(BandwidthK, SqueezeLengthK);
def BulgeK2 = Highest(BandwidthK, BulgeLengthK2);
def SqueezeK2 = Lowest(BandwidthK, SqueezeLengthK2);

#MACD with Price
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;
def condition1D = Value[1] > Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def condition2D = (RSI[3] > RSI) is true or (RSI < 20) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;


#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def condition3D = (MoneyFlowIndex[2] > MoneyFlowIndex) is true or (MoneyFlowIndex < 20) is true;
def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def condition4D = (Intermed[1] > Intermed) or (NearT < MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);

def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;
def condition5D = CIP_DOWN;

#EMA_1
def EMA_length = 12;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);
def condition6D = (price < AvgExp) and (AvgExp[2] > AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp[2] <= AvgExp);
def condition7D = (price < AvgExp2) and (AvgExp[2] > AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;
def condition8D = Osc < ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;
def condition9D = Periods < 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def condition10D = PFE < 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def condition11D = PercentB < HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;


#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);
def condition12D = (Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0);
def condition13D = (KVOH < 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def condition14D = PROSC < 50;
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input coloredCandlesOn = no;
def Confirmation_Factor = 0;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 10;
def Agreement_LevelOS = -10;

def Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionK1 + conditionK2;

def Agreement_LevelD = (condition1D + condition2D + condition3D + condition4D + condition5D + condition6D + condition7D + condition8D + condition9D + condition10D + condition11D + condition12D + condition13D + condition14D + conditionK3D + conditionK4D);

plot Consensus_Level = Agreement_Level - Agreement_LevelD;

def conditionChannel1 = Upper_BandK > price;
def conditionChannel2 = Lower_BandK < price;

def UP = Consensus_Level >= 0;
def DOWN = Consensus_Level < 0;

Consensus_Level.AssignValueColor(
if Consensus_Level > Consensus_Level[1] and Consensus_Level >= 0 then Color.LIGHT_GREEN
else if Consensus_Level < Consensus_Level[1] and Consensus_Level >= 0 then Color.LIGHT_GREEN
else if Consensus_Level < Consensus_Level[1] and Consensus_Level < 0 then Color.RED else
if Consensus_Level > Consensus_Level[1] and Consensus_Level < 0 then Color.RED
else Color.GRAY);

def Zero_Line = 0;

AddCloud(Consensus_Level, Agreement_LevelOB, Color.LIGHT_RED, Color.CURRENT);
AddCloud(Consensus_Level, Agreement_LevelOS, Color.CURRENT, Color.LIGHT_GREEN);

plot BulgeCC = Highest(Consensus_Level, BulgeLengthCC);
BulgeCC.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);

plot SqueezeCC = Lowest(Consensus_Level, SqueezeLengthCC);
SqueezeCC.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);

plot BulgeCC2 = Highest(Consensus_Level, BulgeLengthCC2);
BulgeCC2.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
BulgeCC2.SetStyle(Curve.SHORT_DASH);

plot SqueezeCC2 = Lowest(Consensus_Level, SqueezeLengthCC2);
SqueezeCC2.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
SqueezeCC2.SetStyle(Curve.SHORT_DASH);

Here is a custom watchlist column for the Confirmation Candles. If you sort the column, it makes it easier to see OB/OS conditions. Especially when grouped with the Super OB/OS custom watchlist column which is also posted below.
oBocGCU.png

Code:
#Confirmation Level WL developed 04/15/2021 by Christopher Wilson
#Select the level of agreement among the 15 indicators included.
#Changed 05/20/21 Include CIP.

#MACD with Price
declare lower;
def price = close;
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;

switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg = ExpAverage(Value, MACDLength);}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;

#RSI
input RSI_length = 14;
input RSI_AverageType = AverageType.WILDERS;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;

#MFI
input MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(moneyflow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);

#Change in Price
def lengthCIP = 5;
def displace = 0;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;

#EMA_1
input EMA_length = 12;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);

#EMA_2
input EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp2[2] <= AvgExp2);

#DMI Oscillator
input DMI_length = 5;
input averageType = AverageType.WILDERS;

def diPlus = DMI(DMI_length, averageType)."DI+";
def diMinus = DMI(DMI_length, averageType)."DI-";

def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;

#Trend_Periods
input TP_fastLength = 3;
input TP_slowLength = 4;

def Periods = sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;

#Polarized Fractal Efficiency
input PFE_length = 5;
input smoothingLength = 2.5;

def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);

def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > ZERoLine;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.Simple;
input BBPB_length = 20;
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;

def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;

def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > 50;

#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition13 = (PROSC > 50);

#Trend Confirmation
#Confirmation_Factor range 1-13.
input Confirmation_Factor = 7;
#Use for testing conditions individually.
#def Agreement_Level = condition1;
plot Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13;

def Up = Agreement_Level >= Confirmation_Factor;
def Down = Agreement_Level < Confirmation_Factor;

AssignBackgroundColor(if Up then color.DARK_GREEN else if Down then color.LIGHT_RED else color.black);
Here is the Super OB/OS custom watchlist column.
Code:
#Super_OB_OS_WL
#Created by Christopher84 04/22/2021
#Modified 5/12/2021 Adjusted OB/OS levels.

declare lower;
def BulgeLength = 75;
def SqueezeLength = 75;
def BulgeLength2 = 8;
def SqueezeLength2 = 8;

#RSI
def price = close;
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(moneyflow(high, close, low, volume, MFI_Length), movingAvgLength);

def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;

def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.Simple;
def displace = 0;
def BBPB_length = 20;
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price=high, length=ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price=low, length=ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#OB/OS Calculation

def OB_Level = conditionOB1 + conditionOB2 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS2 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

plot Consensus_Line = OB_Level - OS_Level;

def Zero_Line = 0;
def Super_OB = 4;
def Super_OS = -3;

def OB = Consensus_Line >= Super_OB;
def OS = Consensus_Line <= Super_OS;

AssignBackgroundColor(if OB then color.light_red else if OS then color.dark_green else color.black);

VhkSdLb.png


Here's a code for a cloud reversal WL column. This will show whether an OB/OS cloud is present. OB clouds are light red and OS clouds will show green. I like to group this with the Confirmation Level and SuperOB_OS for additional context.
Code:
#Cloud_Reversal_WL

#Keltner
declare weak_volume_dependency;
input displace = 0;
input factor = 3.25;
input length = 20;
input price = close;
input averageType = AverageType.SIMPLE;
input trueRangeAverageType = AverageType.SIMPLE;

def shift = factor * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), length);
def average = MovingAverage(averageType, price, length);

plot Avg = average[-displace];

def Upper_BandK = average[-displace] + shift[-displace];
def Lower_BandK = average[-displace] - shift[-displace];

#STARC

input ATR_length = 15;
input SMA_length = 6;
input multiplier_factor = 1.25;

def val = Average(price, sma_length);
def average_true_range = Average(TrueRange(high, close, low), length = atr_length);
def Upper_BandS = val[-displace] + multiplier_factor * average_true_range[-displace];
def Lower_BandS = val[-displace] - multiplier_factor * average_true_range[-displace];

def UP = Lower_BandS < Lower_BandK;
def DOWN = Upper_BandS > Upper_BandK;

AssignBackgroundColor(if DOWN then color.LIGHT_RED else if UP then color.dark_green else color.black);

Here is the WL code for the arrows up/down. If the cell is green there is an arrow up, if red there is an arrow down. Adjust the agperiod as desired.
urBhX7D.png

Code:
plot price = CLOSE;
input ShortLength1 = 5;
input ShortLength2 = 14;
input ShortLength3 = 5;
input LongLength1 = 12;
input LongLength2 = 55;
input LongLength3 = 7;
input ColoredCandlesOn = yes;

# Momentum Oscillators

def MS = Average(Average(price, ShortLength1) - Average(price, ShortLength2), ShortLength3);
def MS2 = Average(Average(price, LongLength1) - Average(price, LongLength2), LongLength3);
# Wave A
def MSGreens = If (MS >= 0, MS, 0);
def MSReds = If (MS < 0, MS, 0);
# Wave C
def MS2Blues = If (MS2 >= 0, MS2, 0);
def MS2Yellows = If (MS2 < 0, MS2, 0);
def MayhemBullish = MSGreens > MSGreens[1] and  MS2Blues > MS2Blues[1];
def MayhemBearish =  MSReds < MSReds[1] and  MS2Yellows < MS2Yellows[1];
def MS_Pos = MSGreens;
def MS_Neg = MSReds;
def MS2_Pos = MS2Blues;
def MS2_Neg = MS2Yellows;

# Squeeze Indicator
input length = 20;
input nK = 1.5;
input nBB = 2.0;

def BBHalfWidth = StDev(price, length);
def KCHalfWidth = nK * Average(TrueRange(high,  close,  low),  length);
def isSqueezed = nBB * BBHalfWidth / KCHalfWidth < 1;
def BBS_Ind = If(isSqueezed, 0, Double.NaN);

# Bollinger Resolution

def BBSMA = Average(price, length);
def BBSMAL = BBSMA + (-nBB * BBHalfWidth);
def BBSMAU = BBSMA + (nBB * BBHalfWidth);
def PerB = RoundUp((price - BBSMAL) / (BBSMAU - BBSMAL) * 100, 0);

# Parabolic SAR Signal

input accelerationFactor = 0.0275;
input accelerationLimit = 0.2;
def SAR = ParabolicSAR(accelerationFactor = accelerationFactor, accelerationLimit = accelerationLimit);
def bearishCross = Crosses(SAR, price, CrossingDirection.ABOVE);
def signalDown = BearishCross;#If(bearishCross, 0, Double.NaN);
def bullishCross = Crosses(SAR, price, CrossingDirection.BELOW);
def signalUp =  BullishCross;#If(bullishCross, 0, Double.NaN);
def UP = BullishCross;
def DOWN = BearishCross;
def priceColor = if UP then 1
                 else if DOWN then -1
                 else priceColor[1];

def UP1 = (UP == 1);
def DN1 = (DOWN == 1);

AssignBackgroundColor(if (DN1 == 1) then color.LIGHT_RED else if (UP1 == 1) then color.dark_green else color.black);

For those of you that are intrested, here is the Super OB/OS lower indicator.
wea6B5x.png

gKaEnqX.png

Code:
#Super_OB_OS_Lower
#Created by Christopher84 04/22/2021
#Modified 5/12/2021 Included dynamic support and resistance. Adjusted OB/OS levels.

declare lower;
def BulgeLength = 75;
def SqueezeLength = 75;
def BulgeLength2 = 8;
def SqueezeLength2 = 8;

#RSI
def price = close;
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(moneyflow(high, close, low, volume, MFI_Length), movingAvgLength);

def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;

def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.Simple;
def displace = 0;
def BBPB_length = 20;
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price=high, length=ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price=low, length=ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#OB/OS Calculation

def OB_Level = conditionOB1 + conditionOB2 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS2 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

plot Consensus_Line = OB_Level - OS_Level;

def Zero_Line = 0;

plot Bulge = Highest(Consensus_Line, BulgeLength);
bulge.SetPaintingStrategy(PaintingStrategy.LINE);
bulge.SetLineWeight(1);
bulge.SetDefaultColor(Color.RED);

plot Squeeze = Lowest(Consensus_Line, SqueezeLength);
Squeeze.SetPaintingStrategy(PaintingStrategy.LINE);
Squeeze.SetLineWeight(1);
Squeeze.SetDefaultColor(Color.LIGHT_GREEN);

plot Bulge2 = Highest(Consensus_Line, BulgeLength2);
bulge2.SetPaintingStrategy(PaintingStrategy.LINE);
bulge2.SetStyle(Curve.SHORT_DASH);
bulge2.SetLineWeight(1);
bulge2.SetDefaultColor(Color.GRAY);

plot Squeeze2 = Lowest(Consensus_Line, SqueezeLength2);
Squeeze2.SetPaintingStrategy(PaintingStrategy.LINE);
Squeeze2.SetStyle(Curve.SHORT_DASH);
Squeeze2.SetLineWeight(1);
Squeeze2.SetDefaultColor(Color.GRAY);

input Super_OB = 4;
input Super_OS = -3;

Consensus_Line.AssignValueColor(
if Consensus_Line > Consensus_Line[1] and Consensus_Line >= Zero_Line then Color.LIGHT_GREEN
else if Consensus_Line < Consensus_Line[1] and Consensus_Line >= Zero_Line then Color.LIGHT_GREEN
else if Consensus_Line < Consensus_Line[1] and Consensus_Line < Zero_Line then Color.RED else
if Consensus_Line > Consensus_Line[1] and Consensus_Line < Zero_Line then Color.RED
else Color.GRAY);


AddCloud(Consensus_Line, Super_OB, Color.LIGHT_RED, Color.CURRENT);
AddCloud(Consensus_Line, Super_OS, Color.CURRENT, Color.LIGHT_GREEN);
Here is the Super_OB_OS_SPX_Version.
Code:
#Super_OB_OS_Lower_SPX
#Created by Christopher84 04/22/2021
#Modified 5/12/2021 Included dynamic support and resistance. Adjusted OB/OS levels.

declare lower;
def BulgeLength = 75;
def SqueezeLength = 75;
def BulgeLength2 = 8;
def SqueezeLength2 = 8;

#RSI
def price = close;
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(moneyflow(high, close, low, volume, MFI_Length), movingAvgLength);

#def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
#def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;

def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.Simple;
def displace = 0;
def BBPB_length = 20;
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price=high, length=ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price=low, length=ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#OB/OS Calculation

def OB_Level = conditionOB1 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

plot Consensus_Line = OB_Level - OS_Level;

def Zero_Line = 0;

plot Bulge = Highest(Consensus_Line, BulgeLength);
bulge.SetPaintingStrategy(PaintingStrategy.LINE);
bulge.SetLineWeight(1);
bulge.SetDefaultColor(Color.RED);

plot Squeeze = Lowest(Consensus_Line, SqueezeLength);
Squeeze.SetPaintingStrategy(PaintingStrategy.LINE);
Squeeze.SetLineWeight(1);
Squeeze.SetDefaultColor(Color.LIGHT_GREEN);

plot Bulge2 = Highest(Consensus_Line, BulgeLength2);
bulge2.SetPaintingStrategy(PaintingStrategy.LINE);
bulge2.SetStyle(Curve.SHORT_DASH);
bulge2.SetLineWeight(1);
bulge2.SetDefaultColor(Color.GRAY);

plot Squeeze2 = Lowest(Consensus_Line, SqueezeLength2);
Squeeze2.SetPaintingStrategy(PaintingStrategy.LINE);
Squeeze2.SetStyle(Curve.SHORT_DASH);
Squeeze2.SetLineWeight(1);
Squeeze2.SetDefaultColor(Color.GRAY);

input Super_OB = 4;
input Super_OS = -4;

Consensus_Line.AssignValueColor(
if Consensus_Line > Consensus_Line[1] and Consensus_Line > Zero_Line then Color.GREEN
else if Consensus_Line < Consensus_Line[1] and Consensus_Line > Zero_Line then Color.GREEN
else if Consensus_Line < Consensus_Line[1] and Consensus_Line <= Zero_Line then Color.RED else
if Consensus_Line > Consensus_Line[1] and Consensus_Line <= Zero_Line then Color.RED
else Color.RED);

### Bar Color
input ColorCandlesON = no;

def UP = Consensus_Line > 2;
def DOWN = Consensus_Line < -2;

def PriceColor = if UP then 1
                 else if DOWN then -1
                 else PriceColor[1];

AssignPriceColor(
    if ColorCandlesOn and PriceColor == 1 then Color.GREEN
else if ColorCandlesOn and PriceColor == -1 then Color.RED
else Color.CURRENT
);

AddCloud(Consensus_Line, Super_OB, Color.LIGHT_RED, Color.CURRENT);
AddCloud(Consensus_Line, Super_OS, Color.CURRENT, Color.GREEN);

So last but not least, I have had several request to share my MTF Cloud Upper and Lower studies. So here they are!
aJLdasc.png

Code:
# MTF Moving Average Upper Created 05/01/2021 by Christopher84

declare upper;

input price = close;
input length = 10;
input agperiod1 = {"1 min", "2 min", "5 min", "10 min", "15 min", "30 min", "1 hour", "4 hours", default "Day", "Week"};
input agperiod2 = {"1 min", "2 min", "5 min", "10 min", "15 min", "30 min", "1 hour", "4 hours", "Day", default "Week"};

plot avg = ExpAverage(close(period = agperiod1), length);
def height = avg - avg[length];
avg.SetStyle(Curve.SHORT_DASH);
avg.SetLineWeight(1);

def UP = avg[1] < avg;
def DOWN = avg[1] > avg;
Avg.AssignValueColor(if UP then Color.LIGHT_GREEN else if DOWN then Color.RED else Color.YELLOW);

plot avg2 = ExpAverage(close(period = agperiod2), length);
def height2 = avg2 - avg2[length];
avg2.SetStyle(Curve.SHORT_DASH);
avg2.SetLineWeight(1);

def UP2 = avg2[1] < avg2;
def DOWN2 = avg2[1] > avg2;
Avg2.AssignValueColor(if UP2 then Color.LIGHT_GREEN else if DOWN2 then Color.RED else Color.YELLOW);

AddCloud(avg2, avg, Color.LIGHT_RED, Color.CURRENT);
AddCloud(avg, avg2, Color.LIGHT_GREEN, Color.CURRENT);
Here's the lower MTF Cloud study.
Code:
#MTF Moving Average Lower Created by Christopher84 05/01/2021

declare lower;
#Keltner Channel
def displace = 0;
def factorK = 2.0;
def lengthK = 20;
plot price = close;
input averageType = AverageType.SIMPLE;
def trueRangeAverageType = AverageType.SIMPLE;
def BulgeLengthK = 150;
def SqueezeLengthK = 150;
def BulgeLengthK2 = 40;
def SqueezeLengthK2 = 40;
def BulgeLengthPrice = 75;
def SqueezeLengthPrice = 75;
def BulgeLengthPrice2 = 20;
def SqueezeLengthPrice2 = 20;
def BulgeLengthCC = 40;
def SqueezeLengthCC = 40;
def BulgeLengthCC2 = 8;
def SqueezeLengthCC2 = 8;

def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1 = price >= Upper_BandK;
def conditionK2 = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK3D = price < Lower_BandK;
def conditionK4D = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);

def conditionK2L = (Upper_BandK[2] < Upper_BandK[1]) and (Lower_BandK[2] < Lower_BandK[1]);
def conditionK3L = (Upper_BandK[3] < Upper_BandK[2]) and (Lower_BandK[3] < Lower_BandK[2]);
def conditionK3 = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);

def BandwidthK = (Upper_BandK - Lower_BandK) / AvgK * 100;
def condition_BWKUP = BandwidthK[1] < BandwidthK;
def condition_BWKDOWN = BandwidthK[1] > BandwidthK;
def BulgeK = Highest(BandwidthK, BulgeLengthK);
def SqueezeK = Lowest(BandwidthK, SqueezeLengthK);
def BulgeK2 = Highest(BandwidthK, BulgeLengthK2);
def SqueezeK2 = Lowest(BandwidthK, SqueezeLengthK2);

plot IntermResistance = Highest(price, BulgeLengthPrice);
IntermResistance.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
plot IntermSupport = Lowest(price, SqueezeLengthPrice);
IntermSupport.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);

#MACD with Price
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;
def condition1D = Value[1] > Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def condition2D = (RSI[3] > RSI) is true or (RSI < 20) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;


#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def condition3D = (MoneyFlowIndex[2] > MoneyFlowIndex) is true or (MoneyFlowIndex < 20) is true;
def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def condition4D = (Intermed[1] > Intermed) or (NearT < MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;
def condition5D = CIP_DOWN;

#EMA_1
def EMA_length = 8;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);
def condition6D = (price < AvgExp) and (AvgExp[2] > AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp2[2] <= AvgExp);
def condition7D = (price < AvgExp2) and (AvgExp2[2] > AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;
def condition8D = Osc < ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;
def condition9D = Periods < 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def condition10D = PFE < 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;


#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def condition11D = PercentB < HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;


#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);
def condition12D = (Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0) and (KVOsc[1] <= KVOsc);
def condition13D = (KVOH < 0) and (KVOsc[1] > KVOsc);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def condition14D = PROSC < 50;
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
def coloredCandlesOn = no;
def Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 12;
def Agreement_LevelOS = 3;

def Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionK1 + conditionK2;

def Agreement_LevelD = (condition1D + condition2D + condition3D + condition4D + condition5D + condition6D + condition7D + condition8D + condition9D + condition10D + condition11D + condition12D + condition13D + condition14D + conditionK3D + conditionK4D);

def Consensus_Level = Agreement_Level - Agreement_LevelD;

def conditionChannel1 = Upper_BandK > price;
def conditionChannel2 = Lower_BandK < price;

def UP = Consensus_Level >= 6;

def DOWN = Consensus_Level < -6;


def priceColor = if UP then 1

                 else if DOWN then -1

                 else priceColor[1];

price.AssignValueColor(if priceColor == 1 then Color.LIGHT_GREEN else if priceColor == -1 then Color.RED else Color.CURRENT);

#EMA's
input length = 10;
input agperiod1 = {"1 min", "2 min", "5 min", "10 min", "15 min", "30 min", "1 hour", "4 hours", default "Day", "Week"};
input agperiod2 = {"1 min", "2 min", "5 min", "10 min", "15 min", "30 min", "1 hour", "4 hours", "Day", default "Week"};

plot avg1 = ExpAverage(close(period = agperiod1), length);
def height = avg - avg[length];
avg1.SetStyle(Curve.SHORT_DASH);
avg1.SetLineWeight(1);

def UP1 = avg1[1] < avg1;
def DOWN1 = avg1[1] > avg1;
Avg1.AssignValueColor(if UP1 then Color.LIGHT_GREEN else if DOWN1 then Color.RED else Color.YELLOW);

plot avg2 = ExpAverage(close(period = agperiod2), length);
def height2 = avg2 - avg2[length];
avg2.SetStyle(Curve.SHORT_DASH);
avg2.SetLineWeight(1);

def UP2 = avg2[1] < avg2;
def DOWN2 = avg2[1] > avg2;
Avg2.AssignValueColor(if UP2 then Color.LIGHT_GREEN else if DOWN2 then Color.RED else Color.YELLOW);

AddCloud(avg2, avg1, Color.LIGHT_RED, Color.CURRENT);
AddCloud(avg1, avg2, Color.LIGHT_GREEN, Color.CURRENT);

This is an MTF STARC. Looks great with the MTF MA Cloud for anyone that is interested.
zpf9ntR.png

Code:
#Created 05/26/2021 by Christopher84

declare weak_volume_dependency;

input price = close;
input ATR_length = 15;
input SMA_length = 6;
input displace = 0;
input multiplier_factor = 1.5;
input agperiod1 = {"1 min", "2 min", "5 min", "10 min", "15 min", "30 min", "1 hour", "4 hours", default "Day", "Week"};
def open = open(period = agperiod1);
def high = high(period = agperiod1);
def low = low(period = agperiod1);
def close = close(period = agperiod1);

    def val = Average(close, SMA_length);

    def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);

    plot Upper_Band = val[-displace] + multiplier_factor * average_true_range[-displace];
    def UP = Upper_Band[1] < Upper_Band;
    def DOWN =  Upper_Band[1] > Upper_Band;
    Upper_Band.AssignValueColor(if UP then Color.LIGHT_GREEN else if DOWN then Color.RED else Color.YELLOW);
    Upper_Band.SetStyle(Curve.SHORT_DASH);
    Upper_Band.SetLineWeight(2);

    plot Middle_Band = val[-displace];
    Middle_Band.SetStyle(Curve.SHORT_DASH);
    Middle_Band.SetLineWeight(2);
    Middle_Band.SetDefaultColor(Color.GRAY);

    plot Lower_Band = val[-displace] - multiplier_factor * average_true_range[-displace];
    def UP2 = Lower_Band[1] < Lower_Band;
    def DOWN2 =  Lower_Band[1] > Lower_Band;
    Lower_Band.AssignValueColor(if UP2 then Color.LIGHT_GREEN else if DOWN2 then Color.RED else Color.YELLOW);
    Lower_Band.SetStyle(Curve.SHORT_DASH);
    Lower_Band.SetLineWeight(2);

Here is one more EMA MTF study that can be useful for scalping. It definitely can help to keep you on the right side of the trade. The default settings will only show on a 1 min chart. The settings have be altered to go to different timeframes. One word of caution, this is an MTF study that can repaint. However, through my own experimentation I have found it to be quite useful for scalping 1 min charts and swinging 1 hour charts (setting must be adjusted to the 1 hour timeframe). The labels are intended to give insight to the broader trend. It is preferrable to scalp in the direction of the larger trend. The Bias label is intended to show potential pivots as well as when the lower timeframe trend is in sync with the larger trend.
iVPzuen.png

Code:
#Scalper Upper v2 Created 02/01/2022 by Christopher84
#Sound Alerts added by Barbaros

declare upper;

input price = close;
input length = 10;
input length2 = 35;
input agperiod1 = { "1 min", default "2 min", "3 min", "5 min", "10 min", "15 min", "30 min", "1 hour", "2 hours", "4 hours", "Day", "Week", "Month"};
input agperiod2 = {"1 min", "2 min", default "3 min", "5 min", "10 min", "15 min", "30 min", "1 hour", "2 hours", "4 hours", "Day", "Week", "Month"};
input agperiod3 = {"1 min", "2 min", "3 min", "5 min", default "10 min", "15 min", "30 min", "1 hour", "2 hours", "4 hours", "Day", "Week", "Month"};
input agperiod4 = {"1 min", "2 min", "3 min", "5 min", "10 min", "15 min", default "30 min", "1 hour", "2 hours", "4 hours", "Day", "Week", "Month"};
input agperiod5 = {"1 min", "2 min", "3 min", "5 min", "10 min", "15 min", "30 min", "1 hour", "2 hours", default "4 hours", "Day", "Week", "Month"};
input agperiod6 = {"1 min", "2 min", "3 min", "5 min", "10 min", "15 min", "30 min", "1 hour", "2 hours", "4 hours", default "Day", "Week", "Month"};
def displace = 0;
input paintCandles = yes;
input show_ema_cloud = yes;

#Current Period
plot AvgExp = ExpAverage(price[-displace], length);
AvgExp.SetStyle(Curve.SHORT_DASH);
def UPC1 = AvgExp > AvgExp[1];
def DNC1 = AvgExp < AvgExp[1];

plot AvgExp2 = ExpAverage(price[-displace], length2);
AvgExp2.SetStyle(Curve.SHORT_DASH);
def UPC2 = AvgExp2 > AvgExp2[1];
def DNC2 = AvgExp2 < AvgExp2[1];

def Below = AvgExp < AvgExp2;
def Spark = UPC1 + UPC2 + Below;

def UPEMA = AvgExp[1] < AvgExp;
def DOWNEMA = AvgExp[1] > AvgExp;
AvgExp.AssignValueColor(if UPEMA then Color.LIGHT_GREEN else if DOWNEMA then Color.RED else Color.YELLOW);

def UPEMA2 = AvgExp2[1] < AvgExp2;
def DOWNEMA2 = AvgExp2[1] > AvgExp2;
AvgExp2.AssignValueColor(if UPEMA2 then Color.LIGHT_GREEN else if DOWNEMA2 then Color.RED else Color.YELLOW);

AddCloud(if show_ema_cloud and (AvgExp2 > AvgExp) then AvgExp2 else Double.NaN, AvgExp, Color.LIGHT_RED, Color.CURRENT);
AddCloud(if show_ema_cloud and (AvgExp > AvgExp2) then AvgExp else Double.NaN, AvgExp2, Color.LIGHT_GREEN, Color.CURRENT);

#Agperiod1
def avg = ExpAverage(close(period = agperiod1), length);
def height = avg - avg[length];

def avg2 = ExpAverage(close(period = agperiod1), length2);
def height2 = avg2 - avg2[length2];

def UP = avg > avg2;
def DOWN = avg < avg2;

def R1UP = avg > avg[1];
def R1DN = avg < avg[1];
def R2UP = avg2 > avg2[1];
def R2DN = avg2 < avg2[1];

#Agperiod2
def avg3 = ExpAverage(close(period = agperiod2), length);
def height3 = avg3 - avg3[length];

def avg4 = ExpAverage(close(period = agperiod2), length2);
def height4 = avg4 - avg4[length2];

def UP2 = avg3 > avg4;
def DOWN2 = avg3 < avg4;

def R3UP = avg3 > avg3[1];
def R3DN = avg3 < avg3[1];
def R4UP = avg4 > avg4[1];
def R4DN = avg4 < avg4[1];

#Agperiod3
def avg5 = ExpAverage(close(period = agperiod3), length);
def height5 = avg5 - avg5[length];

def avg6 = ExpAverage(close(period = agperiod3), length2);
def height6 = avg6 - avg6[length2];

def UP3 = avg5 > avg6;
def DOWN3 = avg5 < avg6;

def R5UP = avg5 > avg5[1];
def R5DN = avg5 < avg5[1];
def R6UP = avg6 > avg6[1];
def R6DN = avg6 < avg6[1];

#Agperiod4
def avg7 = ExpAverage(close(period = agperiod4), length);
def height7 = avg7 - avg7[length];

def avg8 = ExpAverage(close(period = agperiod4), length2);
def height8 = avg8 - avg8[length2];

def UP4 = avg7 > avg8;
def DOWN4 = avg7 < avg8;

def R7UP = avg7 > avg7[1];
def R7DN = avg7 < avg7[1];
def R8UP = avg8 > avg8[1];
def R8DN = avg8 < avg8[1];

#Agperiod5
def avg9 = ExpAverage(close(period = agperiod5), length);
def height9 = avg9 - avg9[length];

def avg10 = ExpAverage(close(period = agperiod5), length2);
def height10 = avg10 - avg10[length2];

def UP5 = avg9 > avg10;
def DOWN5 = avg9 < avg10;

def R9UP = avg9 > avg9[1];
def R9DN = avg9 < avg9[1];
def R10UP = avg10 > avg10[1];
def R10DN = avg10 < avg10[1];

#Agperiod6
def avg11 = ExpAverage(close(period = agperiod6), length);
def height11 = avg11 - avg11[length];

def avg12 = ExpAverage(close(period = agperiod6), length2);
def height12 = avg12 - avg12[length2];

def UP6 = avg11 > avg12;
def DOWN6 = avg11 < avg12;

def R11UP = avg11 > avg11[1];
def R11DN = avg11 < avg11[1];
def R12UP = avg12 > avg12[1];
def R12DN = avg12 < avg12[1];

def Long_Only = UP + UP2 + UP3 + UP4 + UP5 + UP6;
def Short_Only = DOWN + DOWN2 + DOWN3 + DOWN4 + DOWN5 + DOWN6;
def Consensus_Bias = Long_Only - Short_Only;

def RUP = UPC1 + UPC2 + R1UP + R2UP + R3UP + R4UP + R5UP + R6UP + R7UP + R8UP + R9UP + R10UP + R11UP + R12UP;
def RDN = DNC1 + DNC2 + R1DN + R2DN + R3DN + R4DN + R5DN + R6DN + R7DN + R8DN + R9DN + R10DN + R11DN + R12DN;
def ConsensusR = RUP - RDN;

script WMA_Smooth {
    input price = hl2;
    plot smooth = (4 * price
+ 3 * price[1]
+ 2 * price[2]
+ price[3]) / 10;
}

script Phase_Accumulation {
# This is Ehler's Phase Accumulation code. It has a full cycle delay.
# However, it computes the correction factor to a very high degree.
#
    input price = hl2;

    rec Smooth;
    rec Detrender;
    rec Period;
    rec Q1;
    rec I1;
    rec I1p;
    rec Q1p;
    rec Phase1;
    rec Phase;
    rec DeltaPhase;
    rec DeltaPhase1;
    rec InstPeriod1;
    rec InstPeriod;
    def CorrectionFactor;

    if BarNumber() <= 5
    then {
        Period = 0;
        Smooth = 0;
        Detrender = 0;
        CorrectionFactor = 0;
        Q1 = 0;
        I1 = 0;
        Q1p = 0;
        I1p = 0;
        Phase = 0;
        Phase1 = 0;
        DeltaPhase1 = 0;
        DeltaPhase = 0;
        InstPeriod = 0;
        InstPeriod1 = 0;
    } else {
        CorrectionFactor = 0.075 * Period[1] + 0.54;

# Smooth and detrend my smoothed signal:
        Smooth = WMA_Smooth(price);
        Detrender = ( 0.0962 * Smooth
+ 0.5769 * Smooth[2]
- 0.5769 * Smooth[4]
- 0.0962 * Smooth[6] ) * CorrectionFactor;

# Compute Quadrature and Phase of Detrended signal:
        Q1p = ( 0.0962 * Detrender
+ 0.5769 * Detrender[2]
- 0.5769 * Detrender[4]
- 0.0962 * Detrender[6] ) * CorrectionFactor;
        I1p = Detrender[3];

# Smooth out Quadrature and Phase:
        I1 = 0.15 * I1p + 0.85 * I1p[1];
        Q1 = 0.15 * Q1p + 0.85 * Q1p[1];

# Determine Phase
        if I1 != 0
        then {
# Normally, ATAN gives results from -pi/2 to pi/2.
# We need to map this to circular coordinates 0 to 2pi

            if Q1 >= 0 and I1 > 0
            then { # Quarant 1
                Phase1 = ATan(AbsValue(Q1 / I1));
            } else if Q1 >= 0 and I1 < 0
            then { # Quadrant 2
                Phase1 = Double.Pi - ATan(AbsValue(Q1 / I1));
            } else if Q1 < 0 and I1 < 0
            then { # Quadrant 3
                Phase1 = Double.Pi + ATan(AbsValue(Q1 / I1));
            } else { # Quadrant 4
                Phase1 = 2 * Double.Pi - ATan(AbsValue(Q1 / I1));
            }
        } else if Q1 > 0
        then { # I1 == 0, Q1 is positive
            Phase1 = Double.Pi / 2;
        } else if Q1 < 0
        then { # I1 == 0, Q1 is negative
            Phase1 = 3 * Double.Pi / 2;
        } else { # I1 and Q1 == 0
            Phase1 = 0;
        }

# Convert phase to degrees
        Phase = Phase1 * 180 / Double.Pi;

        if Phase[1] < 90 and Phase > 270
        then {
# This occurs when there is a big jump from 360-0
            DeltaPhase1 = 360 + Phase[1] - Phase;
        } else {
            DeltaPhase1 = Phase[1] - Phase;
        }

# Limit our delta phases between 7 and 60
        if DeltaPhase1 < 7
        then {
            DeltaPhase = 7;
        } else if DeltaPhase1 > 60
        then {
            DeltaPhase = 60;
        } else {
            DeltaPhase = DeltaPhase1;
        }

# Determine Instantaneous period:
        InstPeriod1 =
-1 * (fold i = 0 to 40 with v=0 do
if v < 0 then
v
else if v > 360 then
-i
else
v + GetValue(DeltaPhase, i, 41)
);

        if InstPeriod1 <= 0
        then {
            InstPeriod = InstPeriod[1];
        } else {
            InstPeriod = InstPeriod1;
        }

        Period = 0.25 * InstPeriod + 0.75 * Period[1];
    }
    plot DC = Period;
}

script Ehler_MAMA {
    input price = hl2;
    input FastLimit = 0.5;
    input SlowLimit = 0.05;


    rec Period;
    rec Period_raw;
    rec Period_cap;
    rec Period_lim;

    rec Smooth;
    rec Detrender;
    rec I1;
    rec Q1;
    rec jI;
    rec jQ;
    rec I2;
    rec Q2;
    rec I2_raw;
    rec Q2_raw;

    rec Phase;
    rec DeltaPhase;
    rec DeltaPhase_raw;
    rec alpha;
    rec alpha_raw;

    rec Re;
    rec Im;
    rec Re_raw;
    rec Im_raw;

    rec SmoothPeriod;
    rec vmama;
    rec vfama;

    def CorrectionFactor = Phase_Accumulation(price).CorrectionFactor;

    if BarNumber() <= 5
    then {
        Smooth = 0;
        Detrender = 0;

        Period = 0;
        Period_raw = 0;
        Period_cap = 0;
        Period_lim = 0;
        I1 = 0;
        Q1 = 0;
        I2 = 0;
        Q2 = 0;
        jI = 0;
        jQ = 0;
        I2_raw = 0;
        Q2_raw = 0;
        Re = 0;
        Im = 0;
        Re_raw = 0;
        Im_raw = 0;
        SmoothPeriod = 0;
        Phase = 0;
        DeltaPhase = 0;
        DeltaPhase_raw = 0;
        alpha = 0;
        alpha_raw = 0;
        vmama = 0;
        vfama = 0;
    } else {
# Smooth and detrend my smoothed signal:
        Smooth = WMA_Smooth(price);
        Detrender = ( 0.0962 * Smooth
+ 0.5769 * Smooth[2]
- 0.5769 * Smooth[4]
- 0.0962 * Smooth[6] ) * CorrectionFactor;

        Q1 = ( 0.0962 * Detrender
+ 0.5769 * Detrender[2]
- 0.5769 * Detrender[4]
- 0.0962 * Detrender[6] ) * CorrectionFactor;
        I1 = Detrender[3];

        jI = ( 0.0962 * I1
+ 0.5769 * I1[2]
- 0.5769 * I1[4]
- 0.0962 * I1[6] ) * CorrectionFactor;

        jQ = ( 0.0962 * Q1
+ 0.5769 * Q1[2]
- 0.5769 * Q1[4]
- 0.0962 * Q1[6] ) * CorrectionFactor;

# This is the complex conjugate
        I2_raw = I1 - jQ;
        Q2_raw = Q1 + jI;

        I2 = 0.2 * I2_raw + 0.8 * I2_raw[1];
        Q2 = 0.2 * Q2_raw + 0.8 * Q2_raw[1];

        Re_raw = I2 * I2[1] + Q2 * Q2[1];
        Im_raw = I2 * Q2[1] - Q2 * I2[1];

        Re = 0.2 * Re_raw + 0.8 * Re_raw[1];
        Im = 0.2 * Im_raw + 0.8 * Im_raw[1];

# Compute the phase
        if Re != 0 and Im != 0
        then {
            Period_raw = 2 * Double.Pi / ATan(Im / Re);
        } else {
            Period_raw = 0;
        }

        if Period_raw > 1.5 * Period_raw[1]
        then {
            Period_cap = 1.5 * Period_raw[1];
        } else if Period_raw < 0.67 * Period_raw[1] {
            Period_cap = 0.67 * Period_raw[1];
        } else {
            Period_cap = Period_raw;
        }

        if Period_cap < 6
        then {
            Period_lim = 6;
        } else if Period_cap > 50
        then {
            Period_lim = 50;
        } else {
            Period_lim = Period_cap;
        }

        Period = 0.2 * Period_lim + 0.8 * Period_lim[1];
        SmoothPeriod = 0.33 * Period + 0.67 * SmoothPeriod[1];

        if I1 != 0
        then {
            Phase = ATan(Q1 / I1);
        } else if Q1 > 0
        then { # Quadrant 1:
            Phase = Double.Pi / 2;
        } else if Q1 < 0
        then { # Quadrant 4:
            Phase = -Double.Pi / 2;
        } else { # Both numerator and denominator are 0.
            Phase = 0;
        }

        DeltaPhase_raw = Phase[1] - Phase;
        if DeltaPhase_raw < 1
        then {
            DeltaPhase = 1;
        } else {
            DeltaPhase = DeltaPhase_raw;
        }

        alpha_raw = FastLimit / DeltaPhase;
        if alpha_raw < SlowLimit
        then {
            alpha = SlowLimit;
        } else {
            alpha = alpha_raw;
        }
        vmama = alpha * price + (1 - alpha) * vmama[1];
        vfama = 0.5 * alpha * vmama + (1 - 0.5 * alpha) * vfama[1];
    }

    plot MAMA = vmama;
    plot FAMA = vfama;
}


input price2 = hl2;
input FastLimit = 0.5;
input SlowLimit = 0.05;

def MAMA = Ehler_MAMA(price2, FastLimit, SlowLimit).MAMA;
def FAMA = Ehler_MAMA(price2, FastLimit, SlowLimit).FAMA;

def Crossing = Crosses((MAMA < FAMA), yes);
#Crossing.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);

def Crossing1 = Crosses((MAMA > FAMA), yes);
#Crossing1.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);

AddLabel(yes, Concat("MAMA: ", Concat("",
if MAMA > FAMA then "Bull" else "Bear")),

if MAMA > FAMA then Color.GREEN else Color.RED);

##################################
plot C3_MF_Line = (MAMA + FAMA) / 2;
C3_MF_Line.SetPaintingStrategy(PaintingStrategy.LINE);
C3_MF_Line.SetLineWeight(3);

def direction = if ConsensusR > Consensus_Bias then 1 else if ConsensusR < Consensus_Bias then -1 else 0;
C3_MF_Line.AssignValueColor(if paintCandles and ((direction == 1) and (price > C3_MF_Line)) then Color.GREEN else if paintCandles and ((direction == -1) and (price < C3_MF_Line)) then Color.RED else Color.GRAY);


plot buy = AvgExp crosses above AvgExp2;#direction crosses above 0;
buy.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);
buy.SetDefaultColor(Color.WHITE);

plot sell = AvgExp crosses below AvgExp2;#direction crosses below 0;
sell.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN );
sell.SetDefaultColor(Color.WHITE);

AssignPriceColor(if paintCandles then if direction == 1 then Color.GREEN else if direction == -1 then Color.RED else Color.GRAY else Color.CURRENT);

AddLabel(yes, if (Spark == 3) then "SPARK UP = " + Round(Spark, 1) else if (Spark == 0) then  "SPARK DOWN = " + Round(Spark, 1) else "SPARK = " + Round(Spark, 1), if (Spark == 3) then Color.YELLOW else if ((Spark == 2) and (AvgExp > AvgExp2)) then Color.GREEN else if (Spark == 0) then Color.RED else Color.GRAY);

AddLabel(yes, if ((UP6 == 1) and (Consensus_Bias > 0)) then " SCALP_LONG " else if ((DOWN6) and (Consensus_Bias < 0)) then " SCALP_SHORT " else " CHOP ", if ((Consensus_Bias > 0) and (UP6 == 1)) then Color.GREEN else if ((Consensus_Bias < 0) and (DOWN6 == 1)) then Color.RED else Color.GRAY);

AddLabel(yes, if (ConsensusR > 0) then " LONG BIAS = %" + Round((ConsensusR / 14) * 100, 1) + " " else if (ConsensusR < 0) then  " SHORT BIAS = %" + Round(((ConsensusR * -1) / 14) * 100, 1) + " " else " CHOP =" + Round((ConsensusR / 14) * 100, 1) + " ", if (ConsensusR > 0) then Color.GREEN else if (ConsensusR < 0) then Color.RED else Color.GRAY);

Alert(direction crosses above 0, "long", Alert.BAR, Sound.DING);
Alert(direction crosses below 0, "short", Alert.BAR, Sound.DING);
**This is a basic strategy that I have put together and will do my best to continue to improve. It is by no means a perfect strategy, however it does show extremely strong performance on some assets in various time periods. Below are some examples (along with the codes). Please do your due dilligence and check the performance before attempting to use this tool in your trading. Feedback is always welcome.
Here is the code for C3_Max_v2_Strategy_LE_SE. This is a basic code that will trade long and short entries. It tends to work best around 5-10 min charts (especially on the /es), with after market hours turned off. ***Please remember to assess the strategy's performance using the Floating P/L study available on ToS before attempting to implement it in your own trading.
zGppUdD.png

Code:
#C3_Max_v2 Strategy LE_SE Created by Christopher84 03/09/2022
#Note that this is set for long and short entries.
#Remember to add the floatingPL study to backtest the strategy's performance before attempting to implement it.
#Remember to turn off aftermarket trading.
# Based off of the Confirmation Candles Study. Main difference is that CC Candles weigh factors of positive
# and negative price movement to create the Consensus_Level. The Consensus_Level is considered positive if
# above zero and negative if below zero.

declare upper;

input price = CLOSE;
input ShortLength1 = 5;
input ShortLength2 = 14;
input ShortLength3 = 5;
input LongLength1 = 12;
input LongLength2 = 55;
input LongLength3 = 7;
input coloredCandlesOn = yes;

# Momentum Oscillators

def MS = Average(Average(price, ShortLength1) - Average(price, ShortLength2), ShortLength3);
def MS2 = Average(Average(price, LongLength1) - Average(price, LongLength2), LongLength3);
# Wave A
def MSGreens = If (MS >= 0, MS, 0);
def MSReds = If (MS < 0, MS, 0);
# Wave C
def MS2Blues = If (MS2 >= 0, MS2, 0);
def MS2Yellows = If (MS2 < 0, MS2, 0);

def MayhemBullish = MSGreens > MSGreens[1] and  MS2Blues > MS2Blues[1];
def MayhemBearish =  MSReds < MSReds[1] and  MS2Yellows < MS2Yellows[1];

def MS_Pos = MSGreens;
def MS_Neg = MSReds;
def MS2_Pos = MS2Blues;
def MS2_Neg = MS2Yellows;

# Squeeze Indicator
def length = 20;
def nK = 1.5;
def nBB = 2.0;

def BBHalfWidth = StDev(price, length);
def KCHalfWidth = nK * Average(TrueRange(high,  close,  low),  length);
def isSqueezed = nBB * BBHalfWidth / KCHalfWidth < 1;

def BBS_Ind = If(isSqueezed, 0, Double.NaN);

# Bollinger Resolution
def BBSMA = Average(price, length);
def BBSMAL = BBSMA + (-nBB * BBHalfWidth);
def BBSMAU = BBSMA + (nBB * BBHalfWidth);
def PerB = RoundUp((price - BBSMAL) / (BBSMAU - BBSMAL) * 100, 0);
AddLabel(yes, Concat("%B: ", PerB), if PerB < 0 then Color.YELLOW else if PerB > 0 and PerB[1] < 0 then Color.GREEN else Color.WHITE);

# Parabolic SAR Signal
def accelerationFactor = 0.0275;
def accelerationLimit = 0.2;

def SAR = ParabolicSAR(accelerationFactor = accelerationFactor, accelerationLimit = accelerationLimit);
def bearishCross = Crosses(SAR, price, CrossingDirection.ABOVE);

plot signalDown = bearishCross;#If(bearishCross, 0, Double.NaN);
signalDown.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);
signalDown.SetLineWeight(3);
signalDown.AssignValueColor(Color.DOWNTICK);

def bullishCross = Crosses(SAR, price, CrossingDirection.BELOW);

plot signalUp =  bullishCross;#If(bullishCross, 0, Double.NaN);
signalUp.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);
signalUp.SetLineWeight(3);
signalUp.AssignValueColor(Color.UPTICK);

def UP = bullishCross;
def DOWN = bearishCross;
def priceColor = if UP then 1
                 else if DOWN then -1
                 else priceColor[1];

####################################################################################################################################################

#OB_OS_Levels_v5

def BarsUsedForRange = 2;
def BarsRequiredToRemainInRange = 2;
def TargetMultiple = 0.5;
def ColorPrice = yes;
def HideTargets = no;
def HideBalance = no;
def HideBoxLines = no;
def HideCloud = no;
def HideLabels = no;

#--------------
#Squeeze Alert
#--------------

#Squeeze Dots Created 04/28/2021 by Christopher84
input ATRPeriod = 5;
input ATRFactor = 2.0;
def HiLo = Min(high - low, 1.5 * Average(high - low, ATRPeriod));
def HRef = if low <= high[1]
    then high - close[1]
    else (high - close[1]) - 0.5 * (low - high[1]);
def LRef = if high >= low[1]
    then close[1] - low
    else (close[1] - low) - 0.5 * (low[1] - high);
input trailType = {default modified, unmodified};
def trueRange;
switch (trailType) {
case modified:
    trueRange = Max(HiLo, Max(HRef, LRef));
case unmodified:
    trueRange = TrueRange(high, close, low);
}
input averageType = AverageType.SIMPLE;
input firstTrade = {default long, short};
#input averageType = AverageType.WILDERS;####Use Simple instead of Wilders
def loss = ATRFactor * MovingAverage(averageType, trueRange, ATRPeriod);
def state = {default init, long, short};
def trail;
switch (state[1]) {
case init:
    if (!IsNaN(loss)) {
        switch (firstTrade) {
        case long:
            state = state.long;
            trail =  close - loss;
        case short:
            state = state.short;
            trail = close + loss;
    }
    } else {
        state = state.init;
        trail = Double.NaN;
    }
case long:
    if (close > trail[1]) {
        state = state.long;
        trail = Max(trail[1], close - loss);
    } else {
        state = state.short;
        trail = close + loss;
    }
case short:
    if (close < trail[1]) {
        state = state.short;
        trail = Min(trail[1], close + loss);
    } else {
        state = state.long;
        trail =  close - loss;
    }
}

def TrailingStop = trail;
def H = Highest(TrailingStop, 12);
def L = Lowest(TrailingStop, 12);
def BulgeLengthPrice = 100;
def SqueezeLengthPrice = 100;
def BandwidthC3 = (H - L);
def IntermResistance2 = Highest(BandwidthC3, BulgeLengthPrice);
def IntermSupport2 = Lowest(BandwidthC3, SqueezeLengthPrice);
def sqzTrigger = BandwidthC3 <= IntermSupport2;
def sqzLevel = if !sqzTrigger[1] and sqzTrigger then hl2
               else if !sqzTrigger then Double.NaN
               else sqzLevel[1];

plot Squeeze_Alert = sqzLevel;
Squeeze_Alert.SetPaintingStrategy(PaintingStrategy.POINTS);
Squeeze_Alert.SetLineWeight(3);
Squeeze_Alert.SetDefaultColor(Color.YELLOW);
def pricecolor11 = price > TrailingStop;
#-----------------------------
#Yellow Candle_height (OB_OS)
#-----------------------------
def displace = 0;
def factorK2 = 3.25;
def lengthK2 = 20;
def price1 = open;
def trueRangeAverageType = AverageType.SIMPLE;
def ATR_length = 15;
def SMA_lengthS = 6;
input ATRPeriod2 = 5;
input ATRFactor2 = 1.5;
#input averageType = AverageType.WILDERS;####Use Simple instead of Wilders
def HiLo2 = Min(high - low, 1.5 * Average(high - low, ATRPeriod));
def HRef2 = if low <= high[1]
    then high - close[1]
    else (high - close[1]) - 0.5 * (low - high[1]);
def LRef2 = if high >= low[1]
    then close[1] - low
    else (close[1] - low) - 0.5 * (low[1] - high);
def loss2 = ATRFactor2 * MovingAverage(averageType, trueRange, ATRPeriod2);

def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def shiftK2 = factorK2 * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK2);
def averageK2 = MovingAverage(averageType, price, lengthK2);
def AvgK2 = averageK2[-displace];
def Upper_BandK2 = averageK2[-displace] + shiftK2[-displace];
def Lower_BandK2 = averageK2[-displace] - shiftK2[-displace];

def condition_BandRevDn = (Upper_BandS > Upper_BandK2);
def condition_BandRevUp = (Lower_BandS < Lower_BandK2);

def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg1;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg1 = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg1 = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg1;
def MACDLevel = 0.0;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;
def condition1D = Value[1] > Value;
def UpStrat1 = Value > Avg1;
def DnStrat1 = Value < Avg1;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def condition2D = (RSI[3] > RSI) is true or (RSI < 20) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;
def UpStrat2 = RSI > 50;
def DnStrat2 = RSI < 50;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def condition3D = (MoneyFlowIndex[2] > MoneyFlowIndex) is true or (MoneyFlowIndex < 20) is true;
def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def condition4D = (Intermed[1] > Intermed) or (NearT < MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;
def condition5D = CIP_DOWN;

#EMA_1
def EMA_length = 8;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);
def condition6D = (price < AvgExp) and (AvgExp[2] > AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp2[2] <= AvgExp);
def condition7D = (price < AvgExp2) and (AvgExp2[2] > AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;
def condition8D = Osc < ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;
def condition9D = Periods < 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def condition10D = PFE < 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def condition11D = PercentB < HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);
def condition12D = (Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0);
def condition13D = (KVOH < 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def condition14D = PROSC < 50;
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 12;
def Agreement_LevelOS = 2;

def factorK = 2.0;
def lengthK = 20;
def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1UP = price >= Upper_BandK;
def conditionK2UP = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK3DN = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);
def conditionK4DN = price < Lower_BandK;
def Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionK1UP + conditionK2UP;

def Agreement_LevelD = (condition1D + condition2D + condition3D + condition4D + condition5D + condition6D + condition7D + condition8D + condition9D + condition10D + condition11D + condition12D + condition13D + condition14D + conditionK3DN + conditionK4DN);

def Consensus_Level = Agreement_Level - Agreement_LevelD;

def UP2 = Consensus_Level >= 4;
def DOWN2 = Consensus_Level < -5;

def priceColor2 = if UP2 then 1
                 else if DOWN2 then -1
                 else priceColor2[1];

def Consensus_Level_OB = 14;
def Consensus_Level_OS = -12;

#Super_OB/OS Signal
def OB_Level = conditionOB1 + conditionOB2 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS2 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

def Consensus_Line = OB_Level - OS_Level;
def Zero_Line = 0;
def Super_OB = 4;
def Super_OS = -4;

def DOWN_OB = (Agreement_Level > Agreement_LevelOB) and (Consensus_Line > Super_OB) and (Consensus_Level > Consensus_Level_OB);
def UP_OS = (Agreement_Level < Agreement_LevelOS) and (Consensus_Line < Super_OS) and (Consensus_Level < Consensus_Level_OS);

def OS_Buy = UP_OS;
def OB_Sell = DOWN_OB;
def neutral = Consensus_Line < Super_OB and Consensus_Line > Super_OS;



input use_line_limits = yes;#Yes, plots line from/to; No, plot line across entire chart
input linefrom = 100;#Hint linefrom: limits how far line plots in candle area
input lineto   = 12;#Hint lineto: limits how far into expansion the line will plot

def YHOB = if coloredCandlesOn and ((price1 > Upper_BandS) and (condition_BandRevDn)) then high else Double.NaN;
def YHOS = if coloredCandlesOn and ((price1 < Lower_BandS) and (condition_BandRevUp)) then high else Double.NaN;

def YLOB = if coloredCandlesOn and ((price1 > Upper_BandS) and (condition_BandRevDn)) then low else Double.NaN;
def YLOS = if coloredCandlesOn and ((price1 < Lower_BandS) and (condition_BandRevUp)) then low else Double.NaN;

#extend midline of yellow candle
plot YCOB = if !IsNaN(YHOB) then hl2 else Double.NaN;
YCOB.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YCOB.SetDefaultColor(Color.GREEN);
def YHextOB = if IsNaN(YCOB) then YHextOB[1] else YCOB;
plot YHextlineOB = YHextOB;
YHextlineOB.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YHextlineOB.SetDefaultColor(Color.ORANGE);
YHextlineOB.SetLineWeight(2);

plot YCOS = if !IsNaN(YHOS) then hl2 else Double.NaN;
YCOS.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YCOS.SetDefaultColor(Color.GREEN);
def YHextOS = if IsNaN(YCOS) then YHextOS[1] else YCOS;
plot YHextlineOS = YHextOS;
YHextlineOS.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YHextlineOS.SetDefaultColor(Color.LIGHT_GREEN);
YHextlineOS.SetLineWeight(2);

def YC = coloredCandlesOn and priceColor2 == 1 and price1 > Upper_BandS and condition_BandRevDn;

#Additional Signals
input showCloud = yes;
#AddCloud(if showCloud and condition_BandRevUp then Lower_BandK2 else Double.NaN,  Lower_BandS,  Color.LIGHT_GREEN,  Color.CURRENT);
#AddCloud(if showCloud and condition_BandRevDn then Upper_BandS else Double.NaN,  Upper_BandK2,  Color.LIGHT_RED,  Color.CURRENT);

# Identify Consolidation

def HH = Highest(high[1], BarsUsedForRange);
def LL = Lowest(low[1], BarsUsedForRange);

def maxH = Highest(HH, BarsRequiredToRemainInRange);
def maxL = Lowest(LL, BarsRequiredToRemainInRange);

def HHn = if maxH == maxH[1] or maxL == maxL then maxH else HHn[1];
def LLn = if maxH == maxH[1] or maxL == maxL then maxL else LLn[1];

def Bh = if high <= HHn and HHn == HHn[1] then HHn else Double.NaN;
def Bl = if low >= LLn and LLn == LLn[1] then LLn else Double.NaN;

def CountH = if IsNaN(Bh) or IsNaN(Bl) then 2 else CountH[1] + 1;
def CountL = if IsNaN(Bh) or IsNaN(Bl) then 2 else CountL[1] + 1;

def ExpH = if BarNumber() == 1 then Double.NaN else
            if CountH[-BarsRequiredToRemainInRange] >= BarsRequiredToRemainInRange then HHn[-BarsRequiredToRemainInRange] else
            if high <= ExpH[1] then ExpH[1] else Double.NaN;

def ExpL = if BarNumber() == 1 then Double.NaN else
            if CountL[-BarsRequiredToRemainInRange] >= BarsRequiredToRemainInRange then LLn[-BarsRequiredToRemainInRange] else
            if low >= ExpL[1] then ExpL[1] else Double.NaN;

# Plot the High and Low of the Box; Paint Cloud
def BoxHigh = if ((DOWN_OB) or (Upper_BandS crosses above Upper_BandK2) or (condition_BandRevDn) and (high > high[1]) and ((price > Upper_BandK2) or (price > Upper_BandS))) then Highest(ExpH) else Double.NaN;

def BoxLow = if (DOWN_OB) or ((Upper_BandS crosses above Upper_BandK2)) then Lowest(low) else Double.NaN;

def BoxHigh2 = if ((UP_OS) or ((Lower_BandS crosses below Lower_BandK2))) then Highest(ExpH) else Double.NaN;

#def BH2 = if !IsNaN(BoxHigh2) then high else Double.NaN;

#def BH2ext = if IsNaN(BH2) then BH2ext[1] else BH2;
#def BH2extline = BH2ext;

#plot H_BH2extline = Lowest(BH2extline, 1);
#H_BH2extline.SetDefaultColor(Color.GREEN);

def BoxLow2 = if ((UP_OS) or (Lower_BandS crosses below Lower_BandK2) or (condition_BandRevUp) and (low < low[1]) and ((price < Lower_BandK2) or (price < Lower_BandS))) or ((UP_OS[1]) and (low < low[1])) then Lowest(low) else Double.NaN;

# extend the current YCHigh line to the right edge of the chart
def BH1 = if !IsNaN(BoxHigh) then high else Double.NaN;

def BH1ext = if IsNaN(BH1) then BH1ext[1] else BH1;
def BH1extline = BH1ext;


def BL1 = if !IsNaN(BoxLow) then low else Double.NaN;
#BL1.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BL1.SetDefaultColor(Color.RED);
def BL1ext = if IsNaN(BL1) then BL1ext[1] else BL1;
plot BL1extline = BL1ext;
BL1extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
BL1extline.SetDefaultColor(Color.RED);
BL1extline.SetLineWeight(1);

def BH2 = if !IsNaN(BoxHigh2) then high else Double.NaN;
#BH2.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BH2.SetDefaultColor(Color.GREEN);
def BH2ext = if IsNaN(BH2) then BH2ext[1] else BH2;
def BH2extline = BH2ext;
#BH2extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BH2extline.SetDefaultColor(Color.GREEN);
#BH2extline.SetLineWeight(3);

def BL2 = if !IsNaN(BoxLow2) then low else Double.NaN;
#BL2.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BL2.SetDefaultColor(Color.RED);
def BL2ext = if IsNaN(BL2) then BL2ext[1] else BL2;
plot BL2extline = BL2ext;
BL2extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
BL2extline.SetDefaultColor(Color.GREEN);
BL2extline.SetLineWeight(1);

plot H_BH1extline = Highest(BH1extline, 1);
H_BH1extline.SetDefaultColor(Color.RED);
plot L_BL1extline = Highest(BL1extline, 1);
L_BL1extline.SetDefaultColor(Color.RED);

plot H_BH2extline = Lowest(BH2extline, 1);
     H_BH2extline.SetDefaultColor(Color.Green);
plot L_BL2extline = Lowest(BL2extline, 1);
L_BL2extline.SetDefaultColor(Color.GREEN);

#plot L_BL1extline = Highest(BL1extline, 1);
#     L_BL1extline.SetDefaultColor(Color.Red);

AddCloud(if showCloud and !HideCloud then BH1extline else Double.NaN, BL1extline, Color.RED, Color.GRAY);
AddCloud(if showCloud and !HideCloud then BH2extline else Double.NaN, BL2extline, Color.GREEN, Color.GRAY);

script WMA_Smooth {
    input price = hl2;
    plot smooth = (4 * price
+ 3 * price[1]
+ 2 * price[2]
+ price[3]) / 10;
}

script Phase_Accumulation {

    input price = hl2;

    rec Smooth;
    rec Detrender;
    rec Period;
    rec Q1;
    rec I1;
    rec I1p;
    rec Q1p;
    rec Phase1;
    rec Phase;
    rec DeltaPhase;
    rec DeltaPhase1;
    rec InstPeriod1;
    rec InstPeriod;
    def CorrectionFactor;

    if BarNumber() <= 5
    then {
        Period = 0;
        Smooth = 0;
        Detrender = 0;
        CorrectionFactor = 0;
        Q1 = 0;
        I1 = 0;
        Q1p = 0;
        I1p = 0;
        Phase = 0;
        Phase1 = 0;
        DeltaPhase1 = 0;
        DeltaPhase = 0;
        InstPeriod = 0;
        InstPeriod1 = 0;
    } else {
        CorrectionFactor = 0.075 * Period[1] + 0.54;

# Smooth and detrend my smoothed signal:
        Smooth = WMA_Smooth(price);
        Detrender = ( 0.0962 * Smooth
+ 0.5769 * Smooth[2]
- 0.5769 * Smooth[4]
- 0.0962 * Smooth[6] ) * CorrectionFactor;

# Compute Quadrature and Phase of Detrended signal:
        Q1p = ( 0.0962 * Detrender
+ 0.5769 * Detrender[2]
- 0.5769 * Detrender[4]
- 0.0962 * Detrender[6] ) * CorrectionFactor;
        I1p = Detrender[3];

# Smooth out Quadrature and Phase:
        I1 = 0.15 * I1p + 0.85 * I1p[1];
        Q1 = 0.15 * Q1p + 0.85 * Q1p[1];

# Determine Phase
        if I1 != 0
        then {
# Normally, ATAN gives results from -pi/2 to pi/2.
# We need to map this to circular coordinates 0 to 2pi

            if Q1 >= 0 and I1 > 0
            then { # Quarant 1
                Phase1 = ATan(AbsValue(Q1 / I1));
            } else if Q1 >= 0 and I1 < 0
            then { # Quadrant 2
                Phase1 = Double.Pi - ATan(AbsValue(Q1 / I1));
            } else if Q1 < 0 and I1 < 0
            then { # Quadrant 3
                Phase1 = Double.Pi + ATan(AbsValue(Q1 / I1));
            } else { # Quadrant 4
                Phase1 = 2 * Double.Pi - ATan(AbsValue(Q1 / I1));
            }
        } else if Q1 > 0
        then { # I1 == 0, Q1 is positive
            Phase1 = Double.Pi / 2;
        } else if Q1 < 0
        then { # I1 == 0, Q1 is negative
            Phase1 = 3 * Double.Pi / 2;
        } else { # I1 and Q1 == 0
            Phase1 = 0;
        }

# Convert phase to degrees
        Phase = Phase1 * 180 / Double.Pi;

        if Phase[1] < 90 and Phase > 270
        then {
# This occurs when there is a big jump from 360-0
            DeltaPhase1 = 360 + Phase[1] - Phase;
        } else {
            DeltaPhase1 = Phase[1] - Phase;
        }

# Limit our delta phases between 7 and 60
        if DeltaPhase1 < 7
        then {
            DeltaPhase = 7;
        } else if DeltaPhase1 > 60
        then {
            DeltaPhase = 60;
        } else {
            DeltaPhase = DeltaPhase1;
        }

# Determine Instantaneous period:
        InstPeriod1 =
-1 * (fold i = 0 to 40 with v=0 do
if v < 0 then
v
else if v > 360 then
-i
else
v + GetValue(DeltaPhase, i, 41)
);

        if InstPeriod1 <= 0
        then {
            InstPeriod = InstPeriod[1];
        } else {
            InstPeriod = InstPeriod1;
        }

        Period = 0.25 * InstPeriod + 0.75 * Period[1];
    }
    plot DC = Period;
}

script Ehler_MAMA {
    input price = hl2;
    input FastLimit = 0.5;
    input SlowLimit = 0.05;


    rec Period;
    rec Period_raw;
    rec Period_cap;
    rec Period_lim;

    rec Smooth;
    rec Detrender;
    rec I1;
    rec Q1;
    rec jI;
    rec jQ;
    rec I2;
    rec Q2;
    rec I2_raw;
    rec Q2_raw;

    rec Phase;
    rec DeltaPhase;
    rec DeltaPhase_raw;
    rec alpha;
    rec alpha_raw;

    rec Re;
    rec Im;
    rec Re_raw;
    rec Im_raw;

    rec SmoothPeriod;
    rec vmama;
    rec vfama;

    def CorrectionFactor = Phase_Accumulation(price).CorrectionFactor;

    if BarNumber() <= 5
    then {
        Smooth = 0;
        Detrender = 0;

        Period = 0;
        Period_raw = 0;
        Period_cap = 0;
        Period_lim = 0;
        I1 = 0;
        Q1 = 0;
        I2 = 0;
        Q2 = 0;
        jI = 0;
        jQ = 0;
        I2_raw = 0;
        Q2_raw = 0;
        Re = 0;
        Im = 0;
        Re_raw = 0;
        Im_raw = 0;
        SmoothPeriod = 0;
        Phase = 0;
        DeltaPhase = 0;
        DeltaPhase_raw = 0;
        alpha = 0;
        alpha_raw = 0;
        vmama = 0;
        vfama = 0;
    } else {
# Smooth and detrend my smoothed signal:
        Smooth = WMA_Smooth(price);
        Detrender = ( 0.0962 * Smooth
+ 0.5769 * Smooth[2]
- 0.5769 * Smooth[4]
- 0.0962 * Smooth[6] ) * CorrectionFactor;

        Q1 = ( 0.0962 * Detrender
+ 0.5769 * Detrender[2]
- 0.5769 * Detrender[4]
- 0.0962 * Detrender[6] ) * CorrectionFactor;
        I1 = Detrender[3];

        jI = ( 0.0962 * I1
+ 0.5769 * I1[2]
- 0.5769 * I1[4]
- 0.0962 * I1[6] ) * CorrectionFactor;

        jQ = ( 0.0962 * Q1
+ 0.5769 * Q1[2]
- 0.5769 * Q1[4]
- 0.0962 * Q1[6] ) * CorrectionFactor;

# This is the complex conjugate
        I2_raw = I1 - jQ;
        Q2_raw = Q1 + jI;

        I2 = 0.2 * I2_raw + 0.8 * I2_raw[1];
        Q2 = 0.2 * Q2_raw + 0.8 * Q2_raw[1];

        Re_raw = I2 * I2[1] + Q2 * Q2[1];
        Im_raw = I2 * Q2[1] - Q2 * I2[1];

        Re = 0.2 * Re_raw + 0.8 * Re_raw[1];
        Im = 0.2 * Im_raw + 0.8 * Im_raw[1];

# Compute the phase
        if Re != 0 and Im != 0
        then {
            Period_raw = 2 * Double.Pi / ATan(Im / Re);
        } else {
            Period_raw = 0;
        }

        if Period_raw > 1.5 * Period_raw[1]
        then {
            Period_cap = 1.5 * Period_raw[1];
        } else if Period_raw < 0.67 * Period_raw[1] {
            Period_cap = 0.67 * Period_raw[1];
        } else {
            Period_cap = Period_raw;
        }

        if Period_cap < 6
        then {
            Period_lim = 6;
        } else if Period_cap > 50
        then {
            Period_lim = 50;
        } else {
            Period_lim = Period_cap;
        }

        Period = 0.2 * Period_lim + 0.8 * Period_lim[1];
        SmoothPeriod = 0.33 * Period + 0.67 * SmoothPeriod[1];

        if I1 != 0
        then {
            Phase = ATan(Q1 / I1);
        } else if Q1 > 0
        then { # Quadrant 1:
            Phase = Double.Pi / 2;
        } else if Q1 < 0
        then { # Quadrant 4:
            Phase = -Double.Pi / 2;
        } else { # Both numerator and denominator are 0.
            Phase = 0;
        }

        DeltaPhase_raw = Phase[1] - Phase;
        if DeltaPhase_raw < 1
        then {
            DeltaPhase = 1;
        } else {
            DeltaPhase = DeltaPhase_raw;
        }

        alpha_raw = FastLimit / DeltaPhase;
        if alpha_raw < SlowLimit
        then {
            alpha = SlowLimit;
        } else {
            alpha = alpha_raw;
        }
        vmama = alpha * price + (1 - alpha) * vmama[1];
        vfama = 0.5 * alpha * vmama + (1 - 0.5 * alpha) * vfama[1];
    }

    plot MAMA = vmama;
    plot FAMA = vfama;
}


input price2 = hl2;
input FastLimit = 0.5;
input SlowLimit = 0.05;

def MAMA = Ehler_MAMA(price2, FastLimit, SlowLimit).MAMA;
def FAMA = Ehler_MAMA(price2, FastLimit, SlowLimit).FAMA;

def Crossing = Crosses((MAMA < FAMA), yes);
#Crossing.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);

def Crossing1 = Crosses((MAMA > FAMA), yes);
#Crossing1.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);

AddLabel(yes, Concat("MAMA: ", Concat("",
if MAMA > FAMA then "Bull" else "Bear")),

if MAMA > FAMA then Color.GREEN else Color.RED);

##################################
plot C3_MF_Line = (MAMA + FAMA) / 2;
C3_MF_Line.SetPaintingStrategy(PaintingStrategy.LINE);
C3_MF_Line.SetLineWeight(3);
C3_MF_Line.AssignValueColor(if ((priceColor2 == 1) and (price1 > Upper_BandS) and (condition_BandRevDn)) then Color.YELLOW else if ((priceColor2 == -1) and (price1 < Lower_BandS) and (condition_BandRevUp)) then Color.YELLOW else if priceColor2 == -1 then Color.RED  else if (priceColor2 == 1) then Color.GREEN else Color.CURRENT);

def C3_MF_UP = C3_MF_Line > C3_MF_Line[1];
def C3_MF_DN = C3_MF_Line < C3_MF_Line[1];
def priceColor9 = if C3_MF_UP then 1
                 else if C3_MF_DN then -1
                 else priceColor9[1];

def MF_UP = FAMA < MAMA;
def MF_DN = FAMA > MAMA;
def priceColor10 = if MF_UP then 1
                 else if MF_DN then -1
                 else priceColor10[1];

input extension_length_limited_to = 10;
def lastbar = if isnan(close[-1]) and !isnan(close) then barnumber() else double.nan;
def inertline = inertiaall(C3_MF_Line,2);
def EXT_C3_MF = if !IsNaN(close()) then inertline else EXT_C3_MF[1] + ((EXT_C3_MF[1] - EXT_C3_MF[2]) / (2 - 1));
plot extension = if barnumber()<=highestall(lastbar)+ extension_length_limited_to then EXT_C3_MF else double.nan;
extension.SetDefaultColor(Color.white);
####################################################################################################################################################

#EMA's
input length8 = 10;
input length9 = 35;
input show_ema_cloud = yes;

plot AvgExp8 = ExpAverage(price[-displace], length8);
def UPD = AvgExp8[1] < AvgExp8;
AvgExp8.SetStyle(Curve.SHORT_DASH);
#AvgExp8.SetLineWeight(1);

plot AvgExp9 = ExpAverage(price[-displace], length9);
def UPW = AvgExp9[1] < AvgExp9;
AvgExp9.SetStyle(Curve.SHORT_DASH);
#AvgExp9.SetLineWeight(1);

def Below = AvgExp8 < AvgExp9;
def Spark = UPD + UPW + Below;

def UPEMA = AvgExp8[1] < AvgExp8;
def DOWNEMA = AvgExp8[1] > AvgExp8;
AvgExp8.AssignValueColor(if UPEMA then Color.LIGHT_GREEN else if DOWNEMA then Color.RED else Color.YELLOW);

def UPEMA2 = AvgExp9[1] < AvgExp9;
def DOWNEMA2 = AvgExp9[1] > AvgExp9;
AvgExp9.AssignValueColor(if UPEMA2 then Color.LIGHT_GREEN else if DOWNEMA2 then Color.RED else Color.YELLOW);

AddCloud(if show_ema_cloud and (AvgExp9 > AvgExp8) then AvgExp9 else Double.NaN, AvgExp8, Color.LIGHT_RED, Color.CURRENT);
AddCloud(if show_ema_cloud and (AvgExp8 > AvgExp9) then AvgExp8 else Double.NaN, AvgExp9, Color.LIGHT_GREEN, Color.CURRENT);

def UP8 = UPEMA and UPEMA2;
def DOWN8 = DOWNEMA and DOWNEMA2;
def priceColor8 = if UP8 then 1
                 else if DOWN8 then -1
                 else 0;

def UpCalc =  (priceColor == 1) + (priceColor2 == 1) + (priceColor8 == 1) + (priceColor10 == 1);

def CandleColor = if (UpCalc >= 3) then 1
                 else if (UpCalc == 0) then -1
                 else if (priceColor2 == 1) then 1
                 else if (priceColor2 == -1) then -1
                 else CandleColor[1];
AssignPriceColor(if coloredCandlesOn and (CandleColor == 1) then Color.GREEN else if coloredCandlesOn and (CandleColor == -1) then Color.RED else Color.GRAY);

#Labels
def Buy = UP_OS;
def Sell = DOWN_OB;
def conditionLTB = (ConditionK2UP and (Consensus_Level < 0));
def conditionLTS = (ConditionK3DN and (Consensus_Level > 0));
def conditionBO = ((Upper_BandS[1] < Upper_BandS) and (Lower_BandS[1] < Lower_BandS)) and ((Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK));
def conditionBD = ((Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS) and (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK));
def MomentumUP = Consensus_Level[1] < Consensus_Level;
def MomentumDOWN = Consensus_Level[1] > Consensus_Level;

def Squeeze_Signal = !IsNaN(Squeeze_Alert);
def conditionOB = (Consensus_Level >= 12) and (Consensus_Line >= 4);
def conditionOS = (Consensus_Level <= -12) and (Consensus_Line <= -3);

AddLabel(yes, if conditionLTB then "BULLISH_LOOK_To_BUY" else if conditionLTS then "BEARISH_LOOK_TO_SELL" else if conditionK2UP then "TREND_BULLISH" else if conditionK3DN then "TREND_BEARISH" else "TREND_CONSOLIDATION", if conditionLTB then Color.GREEN else if conditionLTS then Color.RED else if conditionK2UP then Color.WHITE else if conditionK3DN then Color.DARK_GRAY else Color.GRAY);

AddLabel(yes, if conditionBD then "BREAKDOWN" else if conditionBO then "BREAKOUT" else "NO_BREAK", if conditionBD then Color.RED else if conditionBO then Color.GREEN else Color.GRAY);

AddLabel(yes, if (Spark == 3) then "SPARK UP = " + Round(Spark, 1) else if (Spark == 0) then  "SPARK DOWN = " + Round(Spark, 1) else "SPARK = " + Round(Spark, 1), if (Spark == 3) then Color.YELLOW else if (Spark == 2) then Color.GREEN else if (Spark == 0) then Color.RED else Color.GRAY);

AddLabel(yes, "SQUEEZE ALERT", if Squeeze_Signal then Color.YELLOW else Color.GRAY);

AddLabel(yes, if MomentumUP then "Consensus_Increasing = " + Round(Consensus_Level, 1) else if MomentumUP or MomentumDOWN and conditionOB then "Consensus_OVERBOUGHT = " + Round(Consensus_Level, 1) else if MomentumDOWN then  "Consensus_Decreasing = " + Round(Consensus_Level, 1) else if MomentumUP or MomentumDOWN and conditionOS then "Consensus_OVERSOLD = " + Round(Consensus_Level, 1) else "Consensus = " + Round(Consensus_Level, 1), if conditionOB then Color.RED else if conditionOS then Color.GREEN else Color.GRAY);

#Stochastic
input KPeriod = 10;
input DPeriod = 10;
input priceH = high;
input priceL = low;
input priceC = close;
input slowing_period = 3;
input showBreakoutSignals = {default "No", "On FullK", "On FullD", "On FullK & FullD"};

def lowest_k = Lowest(priceL, KPeriod);
def c1 = priceC - lowest_k;
def c2 = Highest(priceH, KPeriod) - lowest_k;
def FastK = if c2 != 0 then c1 / c2 * 100 else 0;

def FullK = MovingAverage(averageType, FastK, slowing_period);
def FullD = MovingAverage(averageType, FullK, DPeriod);

def UPStrat3 = FullK > 50;
def DNStrat3 = FullK < 50;

def UpCalc2 =  (priceColor == 1) + (priceColor2 == 1) + (priceColor8 == 1) + (priceColor10 == 1);

def CandleColor2 = if (UpCalc2 >= 3) then 1
                 else if (UpCalc2 == 0) then -1
                 else if (priceColor2 == 1) then 1
                 else if (priceColor2 == -1) then -1
                 else CandleColor[1];
AssignPriceColor(if coloredCandlesOn and (CandleColor2 == 1) then Color.GREEN else if coloredCandlesOn and (CandleColor2 == -1) then Color.RED else Color.GRAY);

#Strategy
def UPBias = UpStrat1 + UpStrat2 + UpStrat3;
def DNBias =  DnStrat1 + DnStrat2 + DnStrat3;
def Direction = UPBias - DNBias;

def UPConsensus = Direction > 1;
def DOWNConsensus = Direction < 1;

def priceColorTotal = if UPConsensus then 1
                 else if DOWNConsensus then -1
                 else 0;

def Long_Entry =  (UpConsensus);
def Long_Exit =  (DownConsensus);
AddOrder(OrderType.BUY_AUTO, condition = Long_Entry, price = open[-1], 1, tickcolor = GetColor(1), arrowcolor = Color.LIME, name = "LE");
AddOrder(OrderType.SELL_AUTO, condition = Long_Exit, price = open[-1], 1, tickcolor = GetColor(2), arrowcolor = Color.LIME, name = "SE");
Here is the code for C3_Max_v2_Strategy_LE_LX. This is a basic code that will trade long positions only. It tends to work best around 5-10 min charts (especially on the /es), with after market hours turned off. This strategy can perform well on day charts as well. ***Please remember to assess the strategy's performance using the Floating P/L study available on ToS before attempting to implement it in your own trading.
Cl3Le2v.png

Code:
#C3_Max_v2 Strategy LE_LX Created by Christopher84 03/09/2022
#Note that this is set for long positions only.
#Remember to add the floatingPL study to backtest the strategy's performance before attempting to implement it.
#Remember to turn off aftermarket trading.
# Based off of the Confirmation Candles Study. Main difference is that CC Candles weigh factors of positive
# and negative price movement to create the Consensus_Level. The Consensus_Level is considered positive if
# above zero and negative if below zero.

declare upper;

input price = CLOSE;
input ShortLength1 = 5;
input ShortLength2 = 14;
input ShortLength3 = 5;
input LongLength1 = 12;
input LongLength2 = 55;
input LongLength3 = 7;
input coloredCandlesOn = yes;

# Momentum Oscillators

def MS = Average(Average(price, ShortLength1) - Average(price, ShortLength2), ShortLength3);
def MS2 = Average(Average(price, LongLength1) - Average(price, LongLength2), LongLength3);
# Wave A
def MSGreens = If (MS >= 0, MS, 0);
def MSReds = If (MS < 0, MS, 0);
# Wave C
def MS2Blues = If (MS2 >= 0, MS2, 0);
def MS2Yellows = If (MS2 < 0, MS2, 0);

def MayhemBullish = MSGreens > MSGreens[1] and  MS2Blues > MS2Blues[1];
def MayhemBearish =  MSReds < MSReds[1] and  MS2Yellows < MS2Yellows[1];

def MS_Pos = MSGreens;
def MS_Neg = MSReds;
def MS2_Pos = MS2Blues;
def MS2_Neg = MS2Yellows;

# Squeeze Indicator
def length = 20;
def nK = 1.5;
def nBB = 2.0;

def BBHalfWidth = StDev(price, length);
def KCHalfWidth = nK * Average(TrueRange(high,  close,  low),  length);
def isSqueezed = nBB * BBHalfWidth / KCHalfWidth < 1;

def BBS_Ind = If(isSqueezed, 0, Double.NaN);

# Bollinger Resolution
def BBSMA = Average(price, length);
def BBSMAL = BBSMA + (-nBB * BBHalfWidth);
def BBSMAU = BBSMA + (nBB * BBHalfWidth);
def PerB = RoundUp((price - BBSMAL) / (BBSMAU - BBSMAL) * 100, 0);
AddLabel(yes, Concat("%B: ", PerB), if PerB < 0 then Color.YELLOW else if PerB > 0 and PerB[1] < 0 then Color.GREEN else Color.WHITE);

# Parabolic SAR Signal
def accelerationFactor = 0.0275;
def accelerationLimit = 0.2;

def SAR = ParabolicSAR(accelerationFactor = accelerationFactor, accelerationLimit = accelerationLimit);
def bearishCross = Crosses(SAR, price, CrossingDirection.ABOVE);

plot signalDown = bearishCross;#If(bearishCross, 0, Double.NaN);
signalDown.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);
signalDown.SetLineWeight(3);
signalDown.AssignValueColor(Color.DOWNTICK);

def bullishCross = Crosses(SAR, price, CrossingDirection.BELOW);

plot signalUp =  bullishCross;#If(bullishCross, 0, Double.NaN);
signalUp.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);
signalUp.SetLineWeight(3);
signalUp.AssignValueColor(Color.UPTICK);

def UP = bullishCross;
def DOWN = bearishCross;
def priceColor = if UP then 1
                 else if DOWN then -1
                 else priceColor[1];

####################################################################################################################################################

#OB_OS_Levels_v5

def BarsUsedForRange = 2;
def BarsRequiredToRemainInRange = 2;
def TargetMultiple = 0.5;
def ColorPrice = yes;
def HideTargets = no;
def HideBalance = no;
def HideBoxLines = no;
def HideCloud = no;
def HideLabels = no;

#--------------
#Squeeze Alert
#--------------

#Squeeze Dots Created 04/28/2021 by Christopher84
input ATRPeriod = 5;
input ATRFactor = 2.0;
def HiLo = Min(high - low, 1.5 * Average(high - low, ATRPeriod));
def HRef = if low <= high[1]
    then high - close[1]
    else (high - close[1]) - 0.5 * (low - high[1]);
def LRef = if high >= low[1]
    then close[1] - low
    else (close[1] - low) - 0.5 * (low[1] - high);
input trailType = {default modified, unmodified};
def trueRange;
switch (trailType) {
case modified:
    trueRange = Max(HiLo, Max(HRef, LRef));
case unmodified:
    trueRange = TrueRange(high, close, low);
}
input averageType = AverageType.SIMPLE;
input firstTrade = {default long, short};
#input averageType = AverageType.WILDERS;####Use Simple instead of Wilders
def loss = ATRFactor * MovingAverage(averageType, trueRange, ATRPeriod);
def state = {default init, long, short};
def trail;
switch (state[1]) {
case init:
    if (!IsNaN(loss)) {
        switch (firstTrade) {
        case long:
            state = state.long;
            trail =  close - loss;
        case short:
            state = state.short;
            trail = close + loss;
    }
    } else {
        state = state.init;
        trail = Double.NaN;
    }
case long:
    if (close > trail[1]) {
        state = state.long;
        trail = Max(trail[1], close - loss);
    } else {
        state = state.short;
        trail = close + loss;
    }
case short:
    if (close < trail[1]) {
        state = state.short;
        trail = Min(trail[1], close + loss);
    } else {
        state = state.long;
        trail =  close - loss;
    }
}

def TrailingStop = trail;
def H = Highest(TrailingStop, 12);
def L = Lowest(TrailingStop, 12);
def BulgeLengthPrice = 100;
def SqueezeLengthPrice = 100;
def BandwidthC3 = (H - L);
def IntermResistance2 = Highest(BandwidthC3, BulgeLengthPrice);
def IntermSupport2 = Lowest(BandwidthC3, SqueezeLengthPrice);
def sqzTrigger = BandwidthC3 <= IntermSupport2;
def sqzLevel = if !sqzTrigger[1] and sqzTrigger then hl2
               else if !sqzTrigger then Double.NaN
               else sqzLevel[1];

plot Squeeze_Alert = sqzLevel;
Squeeze_Alert.SetPaintingStrategy(PaintingStrategy.POINTS);
Squeeze_Alert.SetLineWeight(3);
Squeeze_Alert.SetDefaultColor(Color.YELLOW);
def pricecolor11 = price > TrailingStop;
#-----------------------------
#Yellow Candle_height (OB_OS)
#-----------------------------
def displace = 0;
def factorK2 = 3.25;
def lengthK2 = 20;
def price1 = open;
def trueRangeAverageType = AverageType.SIMPLE;
def ATR_length = 15;
def SMA_lengthS = 6;
input ATRPeriod2 = 5;
input ATRFactor2 = 1.5;
#input averageType = AverageType.WILDERS;####Use Simple instead of Wilders
def HiLo2 = Min(high - low, 1.5 * Average(high - low, ATRPeriod));
def HRef2 = if low <= high[1]
    then high - close[1]
    else (high - close[1]) - 0.5 * (low - high[1]);
def LRef2 = if high >= low[1]
    then close[1] - low
    else (close[1] - low) - 0.5 * (low[1] - high);
def loss2 = ATRFactor2 * MovingAverage(averageType, trueRange, ATRPeriod2);

def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def shiftK2 = factorK2 * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK2);
def averageK2 = MovingAverage(averageType, price, lengthK2);
def AvgK2 = averageK2[-displace];
def Upper_BandK2 = averageK2[-displace] + shiftK2[-displace];
def Lower_BandK2 = averageK2[-displace] - shiftK2[-displace];

def condition_BandRevDn = (Upper_BandS > Upper_BandK2);
def condition_BandRevUp = (Lower_BandS < Lower_BandK2);

def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg1;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg1 = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg1 = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg1;
def MACDLevel = 0.0;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;
def condition1D = Value[1] > Value;
def UpStrat1 = Value > Avg1;
def DnStrat1 = Value < Avg1;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def condition2D = (RSI[3] > RSI) is true or (RSI < 20) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;
def UpStrat2 = RSI > 50;
def DnStrat2 = RSI < 50;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def condition3D = (MoneyFlowIndex[2] > MoneyFlowIndex) is true or (MoneyFlowIndex < 20) is true;
def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def condition4D = (Intermed[1] > Intermed) or (NearT < MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;
def condition5D = CIP_DOWN;

#EMA_1
def EMA_length = 8;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);
def condition6D = (price < AvgExp) and (AvgExp[2] > AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp2[2] <= AvgExp);
def condition7D = (price < AvgExp2) and (AvgExp2[2] > AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;
def condition8D = Osc < ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;
def condition9D = Periods < 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def condition10D = PFE < 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def condition11D = PercentB < HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);
def condition12D = (Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0);
def condition13D = (KVOH < 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def condition14D = PROSC < 50;
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 12;
def Agreement_LevelOS = 2;

def factorK = 2.0;
def lengthK = 20;
def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1UP = price >= Upper_BandK;
def conditionK2UP = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK3DN = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);
def conditionK4DN = price < Lower_BandK;
def Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionK1UP + conditionK2UP;

def Agreement_LevelD = (condition1D + condition2D + condition3D + condition4D + condition5D + condition6D + condition7D + condition8D + condition9D + condition10D + condition11D + condition12D + condition13D + condition14D + conditionK3DN + conditionK4DN);

def Consensus_Level = Agreement_Level - Agreement_LevelD;

def UP2 = Consensus_Level >= 4;
def DOWN2 = Consensus_Level < -5;

def priceColor2 = if UP2 then 1
                 else if DOWN2 then -1
                 else priceColor2[1];

def Consensus_Level_OB = 14;
def Consensus_Level_OS = -12;

#Super_OB/OS Signal
def OB_Level = conditionOB1 + conditionOB2 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS2 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

def Consensus_Line = OB_Level - OS_Level;
def Zero_Line = 0;
def Super_OB = 4;
def Super_OS = -4;

def DOWN_OB = (Agreement_Level > Agreement_LevelOB) and (Consensus_Line > Super_OB) and (Consensus_Level > Consensus_Level_OB);
def UP_OS = (Agreement_Level < Agreement_LevelOS) and (Consensus_Line < Super_OS) and (Consensus_Level < Consensus_Level_OS);

def OS_Buy = UP_OS;
def OB_Sell = DOWN_OB;
def neutral = Consensus_Line < Super_OB and Consensus_Line > Super_OS;



input use_line_limits = yes;#Yes, plots line from/to; No, plot line across entire chart
input linefrom = 100;#Hint linefrom: limits how far line plots in candle area
input lineto   = 12;#Hint lineto: limits how far into expansion the line will plot

def YHOB = if coloredCandlesOn and ((price1 > Upper_BandS) and (condition_BandRevDn)) then high else Double.NaN;
def YHOS = if coloredCandlesOn and ((price1 < Lower_BandS) and (condition_BandRevUp)) then high else Double.NaN;

def YLOB = if coloredCandlesOn and ((price1 > Upper_BandS) and (condition_BandRevDn)) then low else Double.NaN;
def YLOS = if coloredCandlesOn and ((price1 < Lower_BandS) and (condition_BandRevUp)) then low else Double.NaN;

#extend midline of yellow candle
plot YCOB = if !IsNaN(YHOB) then hl2 else Double.NaN;
YCOB.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YCOB.SetDefaultColor(Color.GREEN);
def YHextOB = if IsNaN(YCOB) then YHextOB[1] else YCOB;
plot YHextlineOB = YHextOB;
YHextlineOB.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YHextlineOB.SetDefaultColor(Color.ORANGE);
YHextlineOB.SetLineWeight(2);

plot YCOS = if !IsNaN(YHOS) then hl2 else Double.NaN;
YCOS.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YCOS.SetDefaultColor(Color.GREEN);
def YHextOS = if IsNaN(YCOS) then YHextOS[1] else YCOS;
plot YHextlineOS = YHextOS;
YHextlineOS.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
YHextlineOS.SetDefaultColor(Color.LIGHT_GREEN);
YHextlineOS.SetLineWeight(2);

def YC = coloredCandlesOn and priceColor2 == 1 and price1 > Upper_BandS and condition_BandRevDn;

#Additional Signals
input showCloud = yes;
#AddCloud(if showCloud and condition_BandRevUp then Lower_BandK2 else Double.NaN,  Lower_BandS,  Color.LIGHT_GREEN,  Color.CURRENT);
#AddCloud(if showCloud and condition_BandRevDn then Upper_BandS else Double.NaN,  Upper_BandK2,  Color.LIGHT_RED,  Color.CURRENT);

# Identify Consolidation

def HH = Highest(high[1], BarsUsedForRange);
def LL = Lowest(low[1], BarsUsedForRange);

def maxH = Highest(HH, BarsRequiredToRemainInRange);
def maxL = Lowest(LL, BarsRequiredToRemainInRange);

def HHn = if maxH == maxH[1] or maxL == maxL then maxH else HHn[1];
def LLn = if maxH == maxH[1] or maxL == maxL then maxL else LLn[1];

def Bh = if high <= HHn and HHn == HHn[1] then HHn else Double.NaN;
def Bl = if low >= LLn and LLn == LLn[1] then LLn else Double.NaN;

def CountH = if IsNaN(Bh) or IsNaN(Bl) then 2 else CountH[1] + 1;
def CountL = if IsNaN(Bh) or IsNaN(Bl) then 2 else CountL[1] + 1;

def ExpH = if BarNumber() == 1 then Double.NaN else
            if CountH[-BarsRequiredToRemainInRange] >= BarsRequiredToRemainInRange then HHn[-BarsRequiredToRemainInRange] else
            if high <= ExpH[1] then ExpH[1] else Double.NaN;

def ExpL = if BarNumber() == 1 then Double.NaN else
            if CountL[-BarsRequiredToRemainInRange] >= BarsRequiredToRemainInRange then LLn[-BarsRequiredToRemainInRange] else
            if low >= ExpL[1] then ExpL[1] else Double.NaN;

# Plot the High and Low of the Box; Paint Cloud
def BoxHigh = if ((DOWN_OB) or (Upper_BandS crosses above Upper_BandK2) or (condition_BandRevDn) and (high > high[1]) and ((price > Upper_BandK2) or (price > Upper_BandS))) then Highest(ExpH) else Double.NaN;

def BoxLow = if (DOWN_OB) or ((Upper_BandS crosses above Upper_BandK2)) then Lowest(low) else Double.NaN;

def BoxHigh2 = if ((UP_OS) or ((Lower_BandS crosses below Lower_BandK2))) then Highest(ExpH) else Double.NaN;

#def BH2 = if !IsNaN(BoxHigh2) then high else Double.NaN;

#def BH2ext = if IsNaN(BH2) then BH2ext[1] else BH2;
#def BH2extline = BH2ext;

#plot H_BH2extline = Lowest(BH2extline, 1);
#H_BH2extline.SetDefaultColor(Color.GREEN);

def BoxLow2 = if ((UP_OS) or (Lower_BandS crosses below Lower_BandK2) or (condition_BandRevUp) and (low < low[1]) and ((price < Lower_BandK2) or (price < Lower_BandS))) or ((UP_OS[1]) and (low < low[1])) then Lowest(low) else Double.NaN;

# extend the current YCHigh line to the right edge of the chart
def BH1 = if !IsNaN(BoxHigh) then high else Double.NaN;

def BH1ext = if IsNaN(BH1) then BH1ext[1] else BH1;
def BH1extline = BH1ext;


def BL1 = if !IsNaN(BoxLow) then low else Double.NaN;
#BL1.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BL1.SetDefaultColor(Color.RED);
def BL1ext = if IsNaN(BL1) then BL1ext[1] else BL1;
plot BL1extline = BL1ext;
BL1extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
BL1extline.SetDefaultColor(Color.RED);
BL1extline.SetLineWeight(1);

def BH2 = if !IsNaN(BoxHigh2) then high else Double.NaN;
#BH2.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BH2.SetDefaultColor(Color.GREEN);
def BH2ext = if IsNaN(BH2) then BH2ext[1] else BH2;
def BH2extline = BH2ext;
#BH2extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BH2extline.SetDefaultColor(Color.GREEN);
#BH2extline.SetLineWeight(3);

def BL2 = if !IsNaN(BoxLow2) then low else Double.NaN;
#BL2.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
#BL2.SetDefaultColor(Color.RED);
def BL2ext = if IsNaN(BL2) then BL2ext[1] else BL2;
plot BL2extline = BL2ext;
BL2extline.SetPaintingStrategy(PaintingStrategy.HORIZONTAL);
BL2extline.SetDefaultColor(Color.GREEN);
BL2extline.SetLineWeight(1);

plot H_BH1extline = Highest(BH1extline, 1);
H_BH1extline.SetDefaultColor(Color.RED);
plot L_BL1extline = Highest(BL1extline, 1);
L_BL1extline.SetDefaultColor(Color.RED);

plot H_BH2extline = Lowest(BH2extline, 1);
     H_BH2extline.SetDefaultColor(Color.Green);
plot L_BL2extline = Lowest(BL2extline, 1);
L_BL2extline.SetDefaultColor(Color.GREEN);

#plot L_BL1extline = Highest(BL1extline, 1);
#     L_BL1extline.SetDefaultColor(Color.Red);

AddCloud(if showCloud and !HideCloud then BH1extline else Double.NaN, BL1extline, Color.RED, Color.GRAY);
AddCloud(if showCloud and !HideCloud then BH2extline else Double.NaN, BL2extline, Color.GREEN, Color.GRAY);

script WMA_Smooth {
    input price = hl2;
    plot smooth = (4 * price
+ 3 * price[1]
+ 2 * price[2]
+ price[3]) / 10;
}

script Phase_Accumulation {

    input price = hl2;

    rec Smooth;
    rec Detrender;
    rec Period;
    rec Q1;
    rec I1;
    rec I1p;
    rec Q1p;
    rec Phase1;
    rec Phase;
    rec DeltaPhase;
    rec DeltaPhase1;
    rec InstPeriod1;
    rec InstPeriod;
    def CorrectionFactor;

    if BarNumber() <= 5
    then {
        Period = 0;
        Smooth = 0;
        Detrender = 0;
        CorrectionFactor = 0;
        Q1 = 0;
        I1 = 0;
        Q1p = 0;
        I1p = 0;
        Phase = 0;
        Phase1 = 0;
        DeltaPhase1 = 0;
        DeltaPhase = 0;
        InstPeriod = 0;
        InstPeriod1 = 0;
    } else {
        CorrectionFactor = 0.075 * Period[1] + 0.54;

# Smooth and detrend my smoothed signal:
        Smooth = WMA_Smooth(price);
        Detrender = ( 0.0962 * Smooth
+ 0.5769 * Smooth[2]
- 0.5769 * Smooth[4]
- 0.0962 * Smooth[6] ) * CorrectionFactor;

# Compute Quadrature and Phase of Detrended signal:
        Q1p = ( 0.0962 * Detrender
+ 0.5769 * Detrender[2]
- 0.5769 * Detrender[4]
- 0.0962 * Detrender[6] ) * CorrectionFactor;
        I1p = Detrender[3];

# Smooth out Quadrature and Phase:
        I1 = 0.15 * I1p + 0.85 * I1p[1];
        Q1 = 0.15 * Q1p + 0.85 * Q1p[1];

# Determine Phase
        if I1 != 0
        then {
# Normally, ATAN gives results from -pi/2 to pi/2.
# We need to map this to circular coordinates 0 to 2pi

            if Q1 >= 0 and I1 > 0
            then { # Quarant 1
                Phase1 = ATan(AbsValue(Q1 / I1));
            } else if Q1 >= 0 and I1 < 0
            then { # Quadrant 2
                Phase1 = Double.Pi - ATan(AbsValue(Q1 / I1));
            } else if Q1 < 0 and I1 < 0
            then { # Quadrant 3
                Phase1 = Double.Pi + ATan(AbsValue(Q1 / I1));
            } else { # Quadrant 4
                Phase1 = 2 * Double.Pi - ATan(AbsValue(Q1 / I1));
            }
        } else if Q1 > 0
        then { # I1 == 0, Q1 is positive
            Phase1 = Double.Pi / 2;
        } else if Q1 < 0
        then { # I1 == 0, Q1 is negative
            Phase1 = 3 * Double.Pi / 2;
        } else { # I1 and Q1 == 0
            Phase1 = 0;
        }

# Convert phase to degrees
        Phase = Phase1 * 180 / Double.Pi;

        if Phase[1] < 90 and Phase > 270
        then {
# This occurs when there is a big jump from 360-0
            DeltaPhase1 = 360 + Phase[1] - Phase;
        } else {
            DeltaPhase1 = Phase[1] - Phase;
        }

# Limit our delta phases between 7 and 60
        if DeltaPhase1 < 7
        then {
            DeltaPhase = 7;
        } else if DeltaPhase1 > 60
        then {
            DeltaPhase = 60;
        } else {
            DeltaPhase = DeltaPhase1;
        }

# Determine Instantaneous period:
        InstPeriod1 =
-1 * (fold i = 0 to 40 with v=0 do
if v < 0 then
v
else if v > 360 then
-i
else
v + GetValue(DeltaPhase, i, 41)
);

        if InstPeriod1 <= 0
        then {
            InstPeriod = InstPeriod[1];
        } else {
            InstPeriod = InstPeriod1;
        }

        Period = 0.25 * InstPeriod + 0.75 * Period[1];
    }
    plot DC = Period;
}

script Ehler_MAMA {
    input price = hl2;
    input FastLimit = 0.5;
    input SlowLimit = 0.05;


    rec Period;
    rec Period_raw;
    rec Period_cap;
    rec Period_lim;

    rec Smooth;
    rec Detrender;
    rec I1;
    rec Q1;
    rec jI;
    rec jQ;
    rec I2;
    rec Q2;
    rec I2_raw;
    rec Q2_raw;

    rec Phase;
    rec DeltaPhase;
    rec DeltaPhase_raw;
    rec alpha;
    rec alpha_raw;

    rec Re;
    rec Im;
    rec Re_raw;
    rec Im_raw;

    rec SmoothPeriod;
    rec vmama;
    rec vfama;

    def CorrectionFactor = Phase_Accumulation(price).CorrectionFactor;

    if BarNumber() <= 5
    then {
        Smooth = 0;
        Detrender = 0;

        Period = 0;
        Period_raw = 0;
        Period_cap = 0;
        Period_lim = 0;
        I1 = 0;
        Q1 = 0;
        I2 = 0;
        Q2 = 0;
        jI = 0;
        jQ = 0;
        I2_raw = 0;
        Q2_raw = 0;
        Re = 0;
        Im = 0;
        Re_raw = 0;
        Im_raw = 0;
        SmoothPeriod = 0;
        Phase = 0;
        DeltaPhase = 0;
        DeltaPhase_raw = 0;
        alpha = 0;
        alpha_raw = 0;
        vmama = 0;
        vfama = 0;
    } else {
# Smooth and detrend my smoothed signal:
        Smooth = WMA_Smooth(price);
        Detrender = ( 0.0962 * Smooth
+ 0.5769 * Smooth[2]
- 0.5769 * Smooth[4]
- 0.0962 * Smooth[6] ) * CorrectionFactor;

        Q1 = ( 0.0962 * Detrender
+ 0.5769 * Detrender[2]
- 0.5769 * Detrender[4]
- 0.0962 * Detrender[6] ) * CorrectionFactor;
        I1 = Detrender[3];

        jI = ( 0.0962 * I1
+ 0.5769 * I1[2]
- 0.5769 * I1[4]
- 0.0962 * I1[6] ) * CorrectionFactor;

        jQ = ( 0.0962 * Q1
+ 0.5769 * Q1[2]
- 0.5769 * Q1[4]
- 0.0962 * Q1[6] ) * CorrectionFactor;

# This is the complex conjugate
        I2_raw = I1 - jQ;
        Q2_raw = Q1 + jI;

        I2 = 0.2 * I2_raw + 0.8 * I2_raw[1];
        Q2 = 0.2 * Q2_raw + 0.8 * Q2_raw[1];

        Re_raw = I2 * I2[1] + Q2 * Q2[1];
        Im_raw = I2 * Q2[1] - Q2 * I2[1];

        Re = 0.2 * Re_raw + 0.8 * Re_raw[1];
        Im = 0.2 * Im_raw + 0.8 * Im_raw[1];

# Compute the phase
        if Re != 0 and Im != 0
        then {
            Period_raw = 2 * Double.Pi / ATan(Im / Re);
        } else {
            Period_raw = 0;
        }

        if Period_raw > 1.5 * Period_raw[1]
        then {
            Period_cap = 1.5 * Period_raw[1];
        } else if Period_raw < 0.67 * Period_raw[1] {
            Period_cap = 0.67 * Period_raw[1];
        } else {
            Period_cap = Period_raw;
        }

        if Period_cap < 6
        then {
            Period_lim = 6;
        } else if Period_cap > 50
        then {
            Period_lim = 50;
        } else {
            Period_lim = Period_cap;
        }

        Period = 0.2 * Period_lim + 0.8 * Period_lim[1];
        SmoothPeriod = 0.33 * Period + 0.67 * SmoothPeriod[1];

        if I1 != 0
        then {
            Phase = ATan(Q1 / I1);
        } else if Q1 > 0
        then { # Quadrant 1:
            Phase = Double.Pi / 2;
        } else if Q1 < 0
        then { # Quadrant 4:
            Phase = -Double.Pi / 2;
        } else { # Both numerator and denominator are 0.
            Phase = 0;
        }

        DeltaPhase_raw = Phase[1] - Phase;
        if DeltaPhase_raw < 1
        then {
            DeltaPhase = 1;
        } else {
            DeltaPhase = DeltaPhase_raw;
        }

        alpha_raw = FastLimit / DeltaPhase;
        if alpha_raw < SlowLimit
        then {
            alpha = SlowLimit;
        } else {
            alpha = alpha_raw;
        }
        vmama = alpha * price + (1 - alpha) * vmama[1];
        vfama = 0.5 * alpha * vmama + (1 - 0.5 * alpha) * vfama[1];
    }

    plot MAMA = vmama;
    plot FAMA = vfama;
}


input price2 = hl2;
input FastLimit = 0.5;
input SlowLimit = 0.05;

def MAMA = Ehler_MAMA(price2, FastLimit, SlowLimit).MAMA;
def FAMA = Ehler_MAMA(price2, FastLimit, SlowLimit).FAMA;

def Crossing = Crosses((MAMA < FAMA), yes);
#Crossing.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);

def Crossing1 = Crosses((MAMA > FAMA), yes);
#Crossing1.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);

AddLabel(yes, Concat("MAMA: ", Concat("",
if MAMA > FAMA then "Bull" else "Bear")),

if MAMA > FAMA then Color.GREEN else Color.RED);

##################################
plot C3_MF_Line = (MAMA + FAMA) / 2;
C3_MF_Line.SetPaintingStrategy(PaintingStrategy.LINE);
C3_MF_Line.SetLineWeight(3);
C3_MF_Line.AssignValueColor(if ((priceColor2 == 1) and (price1 > Upper_BandS) and (condition_BandRevDn)) then Color.YELLOW else if ((priceColor2 == -1) and (price1 < Lower_BandS) and (condition_BandRevUp)) then Color.YELLOW else if priceColor2 == -1 then Color.RED  else if (priceColor2 == 1) then Color.GREEN else Color.CURRENT);

def C3_MF_UP = C3_MF_Line > C3_MF_Line[1];
def C3_MF_DN = C3_MF_Line < C3_MF_Line[1];
def priceColor9 = if C3_MF_UP then 1
                 else if C3_MF_DN then -1
                 else priceColor9[1];

def MF_UP = FAMA < MAMA;
def MF_DN = FAMA > MAMA;
def priceColor10 = if MF_UP then 1
                 else if MF_DN then -1
                 else priceColor10[1];

input extension_length_limited_to = 10;
def lastbar = if isnan(close[-1]) and !isnan(close) then barnumber() else double.nan;
def inertline = inertiaall(C3_MF_Line,2);
def EXT_C3_MF = if !IsNaN(close()) then inertline else EXT_C3_MF[1] + ((EXT_C3_MF[1] - EXT_C3_MF[2]) / (2 - 1));
plot extension = if barnumber()<=highestall(lastbar)+ extension_length_limited_to then EXT_C3_MF else double.nan;
extension.SetDefaultColor(Color.white);
####################################################################################################################################################

#EMA's
input length8 = 10;
input length9 = 35;
input show_ema_cloud = yes;

plot AvgExp8 = ExpAverage(price[-displace], length8);
def UPD = AvgExp8[1] < AvgExp8;
AvgExp8.SetStyle(Curve.SHORT_DASH);
#AvgExp8.SetLineWeight(1);

plot AvgExp9 = ExpAverage(price[-displace], length9);
def UPW = AvgExp9[1] < AvgExp9;
AvgExp9.SetStyle(Curve.SHORT_DASH);
#AvgExp9.SetLineWeight(1);

def Below = AvgExp8 < AvgExp9;
def Spark = UPD + UPW + Below;

def UPEMA = AvgExp8[1] < AvgExp8;
def DOWNEMA = AvgExp8[1] > AvgExp8;
AvgExp8.AssignValueColor(if UPEMA then Color.LIGHT_GREEN else if DOWNEMA then Color.RED else Color.YELLOW);

def UPEMA2 = AvgExp9[1] < AvgExp9;
def DOWNEMA2 = AvgExp9[1] > AvgExp9;
AvgExp9.AssignValueColor(if UPEMA2 then Color.LIGHT_GREEN else if DOWNEMA2 then Color.RED else Color.YELLOW);

AddCloud(if show_ema_cloud and (AvgExp9 > AvgExp8) then AvgExp9 else Double.NaN, AvgExp8, Color.LIGHT_RED, Color.CURRENT);
AddCloud(if show_ema_cloud and (AvgExp8 > AvgExp9) then AvgExp8 else Double.NaN, AvgExp9, Color.LIGHT_GREEN, Color.CURRENT);

def UP8 = UPEMA and UPEMA2;
def DOWN8 = DOWNEMA and DOWNEMA2;
def priceColor8 = if UP8 then 1
                 else if DOWN8 then -1
                 else 0;

def UpCalc =  (priceColor == 1) + (priceColor2 == 1) + (priceColor8 == 1) + (priceColor10 == 1);

def CandleColor = if (UpCalc >= 3) then 1
                 else if (UpCalc == 0) then -1
                 else if (priceColor2 == 1) then 1
                 else if (priceColor2 == -1) then -1
                 else CandleColor[1];
AssignPriceColor(if coloredCandlesOn and (CandleColor == 1) then Color.GREEN else if coloredCandlesOn and (CandleColor == -1) then Color.RED else Color.GRAY);

#Labels
def Buy = UP_OS;
def Sell = DOWN_OB;
def conditionLTB = (ConditionK2UP and (Consensus_Level < 0));
def conditionLTS = (ConditionK3DN and (Consensus_Level > 0));
def conditionBO = ((Upper_BandS[1] < Upper_BandS) and (Lower_BandS[1] < Lower_BandS)) and ((Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK));
def conditionBD = ((Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS) and (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK));
def MomentumUP = Consensus_Level[1] < Consensus_Level;
def MomentumDOWN = Consensus_Level[1] > Consensus_Level;

def Squeeze_Signal = !IsNaN(Squeeze_Alert);
def conditionOB = (Consensus_Level >= 12) and (Consensus_Line >= 4);
def conditionOS = (Consensus_Level <= -12) and (Consensus_Line <= -3);

AddLabel(yes, if conditionLTB then "BULLISH_LOOK_To_BUY" else if conditionLTS then "BEARISH_LOOK_TO_SELL" else if conditionK2UP then "TREND_BULLISH" else if conditionK3DN then "TREND_BEARISH" else "TREND_CONSOLIDATION", if conditionLTB then Color.GREEN else if conditionLTS then Color.RED else if conditionK2UP then Color.WHITE else if conditionK3DN then Color.DARK_GRAY else Color.GRAY);

AddLabel(yes, if conditionBD then "BREAKDOWN" else if conditionBO then "BREAKOUT" else "NO_BREAK", if conditionBD then Color.RED else if conditionBO then Color.GREEN else Color.GRAY);

AddLabel(yes, if (Spark == 3) then "SPARK UP = " + Round(Spark, 1) else if (Spark == 0) then  "SPARK DOWN = " + Round(Spark, 1) else "SPARK = " + Round(Spark, 1), if (Spark == 3) then Color.YELLOW else if (Spark == 2) then Color.GREEN else if (Spark == 0) then Color.RED else Color.GRAY);

AddLabel(yes, "SQUEEZE ALERT", if Squeeze_Signal then Color.YELLOW else Color.GRAY);

AddLabel(yes, if MomentumUP then "Consensus_Increasing = " + Round(Consensus_Level, 1) else if MomentumUP or MomentumDOWN and conditionOB then "Consensus_OVERBOUGHT = " + Round(Consensus_Level, 1) else if MomentumDOWN then  "Consensus_Decreasing = " + Round(Consensus_Level, 1) else if MomentumUP or MomentumDOWN and conditionOS then "Consensus_OVERSOLD = " + Round(Consensus_Level, 1) else "Consensus = " + Round(Consensus_Level, 1), if conditionOB then Color.RED else if conditionOS then Color.GREEN else Color.GRAY);

#Stochastic
input KPeriod = 10;
input DPeriod = 10;
input priceH = high;
input priceL = low;
input priceC = close;
input slowing_period = 3;
input showBreakoutSignals = {default "No", "On FullK", "On FullD", "On FullK & FullD"};

def lowest_k = Lowest(priceL, KPeriod);
def c1 = priceC - lowest_k;
def c2 = Highest(priceH, KPeriod) - lowest_k;
def FastK = if c2 != 0 then c1 / c2 * 100 else 0;

def FullK = MovingAverage(averageType, FastK, slowing_period);
def FullD = MovingAverage(averageType, FullK, DPeriod);

def UPStrat3 = FullK > 50;
def DNStrat3 = FullK < 50;

def UpCalc2 =  (priceColor == 1) + (priceColor2 == 1) + (priceColor8 == 1) + (priceColor10 == 1);

def CandleColor2 = if (UpCalc2 >= 3) then 1
                 else if (UpCalc2 == 0) then -1
                 else if (priceColor2 == 1) then 1
                 else if (priceColor2 == -1) then -1
                 else CandleColor[1];
AssignPriceColor(if coloredCandlesOn and (CandleColor2 == 1) then Color.GREEN else if coloredCandlesOn and (CandleColor2 == -1) then Color.RED else Color.GRAY);

#Strategy
def UPBias = UpStrat1 + UpStrat2 + UpStrat3;
def DNBias =  DnStrat1 + DnStrat2 + DnStrat3;
def Direction = UPBias - DNBias;

def UPConsensus = Direction > 1;
def DOWNConsensus = Direction < 1;

def priceColorTotal = if UPConsensus then 1
                 else if DOWNConsensus then -1
                 else 0;

def Long_Entry =  (UpConsensus);
def Long_Exit =  (DownConsensus);
AddOrder(OrderType.BUY_TO_OPEN, condition = Long_Entry, price = open[-1], 1, tickcolor = GetColor(1), arrowcolor = Color.LIME, name = "LE");
AddOrder(OrderType.SELL_TO_CLOSE, condition = Long_Exit, price = open[-1], 1, tickcolor = GetColor(2), arrowcolor = Color.LIME, name = "LX");

Here is the code for EMAD_Range. This indicator helps to trader see the trend (below 0 bearish, above 0 bullish). It also helps to see where potential pullbacks may occur by looking at where previous pullbacks have occured.
bX9H7bU.png

Code:
#EMAD_Range Created by Christopher84 01/05/2022

declare lower;
input length8 = 10;
input length9 = 35;
input length10 = 12;
input show_ema_cloud = yes;
input price1 = close;
input coloredCandlesOn = yes;
def showBreakoutSignals = no;
def displace = 0;

def AvgExp8 = ExpAverage(price1[-displace], length8);
def UPD = AvgExp8[1] < AvgExp8;
#AvgExp8.SetStyle(Curve.SHORT_DASH);
#AvgExp8.SetLineWeight(1);

def AvgExp9 = ExpAverage(price1[-displace], length9);
def UPW = AvgExp9[1] < AvgExp9;
#AvgExp9.SetStyle(Curve.SHORT_DASH);
#AvgExp9.SetLineWeight(1);

def Below = AvgExp8 < AvgExp9;
def Spark = UPD + UPW + Below;

def UPEMA = AvgExp8[1] < AvgExp8;
def DOWNEMA = AvgExp8[1] > AvgExp8;
#AvgExp8.AssignValueColor(if UPEMA then Color.LIGHT_GREEN else if DOWNEMA then Color.RED else Color.YELLOW);

def UPEMA2 = AvgExp9[1] < AvgExp9;
def DOWNEMA2 = AvgExp9[1] > AvgExp9;
#AvgExp9.AssignValueColor(if UPEMA2 then Color.LIGHT_GREEN else if DOWNEMA2 then Color.RED else Color.YELLOW);

def EMAD = (price1 - AvgExp8);
def UPEMAD = EMAD >= EMAD[1];
def DOWNEMAD = EMAD < EMAD[1];
#EMAD.AssignValueColor(if UPEMAD then Color.LIGHT_GREEN else if DOWNEMAD then Color.RED else Color.GRAY);

def EMAD2 = (price1 - AvgExp9);
def UPEMAD2 = EMAD2 >= EMAD2[1];
def DOWNEMAD2 = EMAD2 < EMAD2[1];
#EMAD2.AssignValueColor(if UPEMAD2 then Color.White else if DOWNEMAD2 then Color.BLUE else Color.GRAY);

def EMADAvg = (EMAD + EMAD2) / 2;
def UPEMADAvg = EMADAvg >= EMADAvg[1];
def DOWNEMADAvg = EMADAvg < EMADAvg[1];
#EMADAvg.AssignValueColor(if UPEMADAvg then Color.LIGHT_GREEN else if DOWNEMADAvg then Color.RED else Color.GRAY);

plot EMADSmooth = ExpAverage(EMADAvg[-displace], length10);


#########################################
input length = 14;
input averageType = AverageType.WILDERS;
def price = EMADSmooth;
#def bottom = Min(close[1], low);
input agperiod1 = AggregationPeriod.DAY;

def o = (EMADSmooth + EMADSmooth[1]) / 2;

def h = Max(EMADSmooth, EMADSmooth[1]);

def l = Min(EMADSmooth, EMADSmooth[1]);

def c = EMADSmooth;

#def open = open(period = agperiod1);
#def high = high(period = agperiod1);
#def low = low(period = agperiod1);
#def close = close(period = agperiod1);
def bottom = Min(c[1], l);
def tr = TrueRange(h, c, l);

def ptr = tr / (bottom + tr / 2);

def APTR = MovingAverage(averageType, ptr, length);
#APTR.SetDefaultColor(GetColor(8));
def UpperBand = c[1] + (APTR * o);
#UpperBand.SetDefaultColor(Color.GRAY);

def LowerBand = c[1] - (APTR * o);
#LowerBand.SetDefaultColor(Color.GRAY);

plot MidBand = (UpperBand + LowerBand) / 2;
MidBand.AssignValueColor(if (MidBand > EMADSmooth) then Color.RED else if (MidBand < EMADSmooth) then Color.GREEN else Color.GRAY);
EMADSmooth.AssignValueColor(if (MidBand > EMADSmooth) then Color.RED else if (MidBand < EMADSmooth) then Color.GREEN else Color.GRAY);

AddCloud(if show_ema_cloud and (MidBand > EMADSmooth) then MidBand else Double.NaN, EMADSmooth, Color.RED, Color.CURRENT);
AddCloud(if show_ema_cloud and (EMADSmooth >= MidBand) then EMADSmooth else Double.NaN, MidBand, Color.GREEN, Color.CURRENT);

def BulgeLength = 100;
def SqueezeLength = 100;
def BulgeLength2 = 200;
def SqueezeLength2 = 200;

plot ZeroLine = 0;
ZeroLine.AssignValueColor(if (EMADSmooth > ZeroLine) then Color.GREEN else if (EMADSmooth < ZeroLine) then Color.RED else Color.YELLOW);

def EMADSUp = EMADSmooth > ZeroLine;
def EMADSDown = EMADSmooth < ZeroLine;

AssignPriceColor (if coloredCandlesOn and (MidBand > EMADSmooth) then Color.RED  else if coloredCandlesOn and (MidBand < EMADSmooth) then Color.GREEN else Color.GRAY);

plot Bulge = Highest(MidBand, BulgeLength);
Bulge.SetDefaultColor(Color.WHITE);
plot Squeeze = Lowest(MidBand, SqueezeLength);
Squeeze.SetDefaultColor(Color.WHITE);

Could I also ask what script you are using to show the Buy volume and the Sell volume top left in your image?
Could I also ask what script you are using to show the Buy volume and the Sell volume top left in your image?
the link provided for the lower study (https://tos.mx/f3WKPTt) does not look anything like the lower study shown above. Can you please share the code for the above lower study?
 

Not the exact question you're looking for?

Start a new thread and receive assistance from our community.

87k+ Posts
557 Online
Create Post

The Market Trading Game Changer

Join 2,500+ subscribers inside the useThinkScript VIP Membership Club
  • Exclusive indicators
  • Proven strategies & setups
  • Private Discord community
  • ‘Buy The Dip’ signal alerts
  • Exclusive members-only content
  • Add-ons and resources
  • 1 full year of unlimited support

Frequently Asked Questions

What is useThinkScript?

useThinkScript is the #1 community of stock market investors using indicators and other tools to power their trading strategies. Traders of all skill levels use our forums to learn about scripting and indicators, help each other, and discover new ways to gain an edge in the markets.

How do I get started?

We get it. Our forum can be intimidating, if not overwhelming. With thousands of topics, tens of thousands of posts, our community has created an incredibly deep knowledge base for stock traders. No one can ever exhaust every resource provided on our site.

If you are new, or just looking for guidance, here are some helpful links to get you started.

What are the benefits of VIP Membership?
VIP members get exclusive access to these proven and tested premium indicators: Buy the Dip, Advanced Market Moves 2.0, Take Profit, and Volatility Trading Range. In addition, VIP members get access to over 50 VIP-only custom indicators, add-ons, and strategies, private VIP-only forums, private Discord channel to discuss trades and strategies in real-time, customer support, trade alerts, and much more. Learn all about VIP membership here.
How can I access the premium indicators?
To access the premium indicators, which are plug and play ready, sign up for VIP membership here.
Back
Top