Confirmation Candles Indicator For ThinkorSwim

There are two options that I can think of right off.
1. Use a higher timeframe chart to reduce the noise. When I am using this indicator to scalp, I don't go below 2 min charts and prefer 10 min charts.
2. You could increase the Confirmation Level if you prefer the 1 min charts and it should help to reduce the noise. Play around with the level and see what works best for the asset you are trading.

Hopefully this will help. If not, let me know.
Will play around today, will let you know.
 

Join useThinkScript to post your question to a community of 21,000+ developers and traders.

@Christopher84, thank you for all the hard work and time you have put into this awesome indicator....I love it! I'm using CC Candles V3. I read your last response about increasing the conformation level. I too, like the 1min. chart. Is there anything I need to change/adjust for using this time frame? Again, thank you for all your work, help and answers to questions!
 
Hi Everyone!
I have been working on an Idea I am calling confirmation candles. I often times find myself trying to find agreement among the numerous indicators that I use to help guide my decisions. Unfortunately, a lot of the time this creates indicator overload and analysis paralysis. So I have included 15 indicators of trend within this indicator. You can choose how many of the 15 indicators have to be in agreement in order to confirm the trend. I may have gone a bit overboard here, however it makes it adaptable to individual risk tolerance and trading style.

***Please note that I will always post the newest version of these indicators on page 1 of this thread. I am always happy to answer questions for those who are trying to utilize these indicators. However, I ask that you review my post below explaining the various aspects of the indicators. I'll do my best to continue to elaborate to help everyone.

wx6WYDq.png

IATXQlV.png


Code:
#
#Confirmation Candles V.10
#Created 04/15/2021 by Christopher84
#Select the level of agreement among the 15 indicators included.
#Changed 04/19/2021 to V.3 - Removed ChaikinOsc and replaced with STARCBands. Added squeeze alert.
#Changed 04/20/2021 to V.4 - Added Keltner Channel, Labels, and Buy and Sell Zones. Mean Reversion and Breakout Labels added. Reversal_Alert points added.
#Changed 4/22/2021 to V.5 - Removed Buy/Sell clouds. Created new reversal alert buy(gray points) and take profit (red points). Increase factorK.
#Changed 4/23/2021 to V.6 - Refined reversal signals. Fully integrated Super_OB_OS indicator. Fixed candles going yellow if colored_candles is off.
#Changed 4/26/2021 to V.7 - Refined reversal signals and included Keltner Bandwidth. Adjusted Keltner Channel levels.
#Changed 4/27/2021 to V.8 - Improved reversal signals and included support and resistance zones.
#Changed 05/12/2021 to V.9  - dialed in studies to give stronger signals. Removed reversal buy and sell signals with OB/OS signals. Included OB/OS clouds to indicate favorable zones to buy or take profit. Clouds can also indicate nearterm reversals. Cleaned up code.
#Changed 05/20/2021 to V.10 - Removed Pivot Study and replaced with CIP. Reworked Labels to reflect mean reversion Look to Buy/Look to Sell conditions. Removed Mean Reversion Label. Added new label to show the Confirmation_Level and color coded it to show OB/OS conditions.

#Keltner Channel
declare upper;
def displace = 0;
def factorK = 2.0;
def lengthK = 20;
def price = close;
input averageType = AverageType.SIMPLE;
def trueRangeAverageType = AverageType.SIMPLE;
def BulgeLengthK = 150;
def SqueezeLengthK = 150;
def BulgeLengthK2 = 40;
def SqueezeLengthK2 = 40;
def BulgeLengthPrice = 75;
def SqueezeLengthPrice = 75;
def BulgeLengthPrice2 = 20;
def SqueezeLengthPrice2 = 20;

def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1 = price >= Upper_BandK;
def conditionK2 = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK2L = (Upper_BandK[2] < Upper_BandK[1]) and (Lower_BandK[2] < Lower_BandK[1]);
def conditionK3L = (Upper_BandK[3] < Upper_BandK[2]) and (Lower_BandK[3] < Lower_BandK[2]);
def conditionK3 = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);
def BandwidthK = (Upper_BandK - Lower_BandK) / AvgK * 100;
def condition_BWKUP = BandwidthK[1] < BandwidthK;
def condition_BWKDOWN = BandwidthK[1] > BandwidthK;
def BulgeK = Highest(BandwidthK, BulgeLengthK);
def SqueezeK = Lowest(BandwidthK, SqueezeLengthK);
def BulgeK2 = Highest(BandwidthK, BulgeLengthK2);
def SqueezeK2 = Lowest(BandwidthK, SqueezeLengthK2);

plot IntermResistance = Highest(price, BulgeLengthPrice);
IntermResistance.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
plot IntermSupport = Lowest(price, SqueezeLengthPrice);
IntermSupport.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);

plot NearTResistance = Highest(price, BulgeLengthPrice2);
NearTResistance.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
NearTResistance.SetStyle(Curve.SHORT_DASH);
plot NearTSupport = Lowest(price, SqueezeLengthPrice2);
NearTSupport.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
NearTSupport.SetStyle(Curve.SHORT_DASH);

#MACD with Price
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 =  (Intermed[1] <= Intermed) or (NearT >= MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];

def condition5 = CIP_UP;

#EMA_1
def EMA_length = 12;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp[2] <= AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = (PROSC > 50);# or ((PROSC[1] < PROSC) and PROSC > 40);
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input coloredCandlesOn = yes;
input Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 12;
def Agreement_LevelOS = 3;

def Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionK1 + conditionK2;

def conditionChannel1 = Upper_BandK > price;
def conditionChannel2 = Lower_BandK < price;

def UP = Agreement_Level >= Confirmation_Factor;
def DOWN = Agreement_Level < Confirmation_Factor;

AssignPriceColor(if coloredCandlesOn and UP then Color.LIGHT_GREEN else if coloredCandlesOn and DOWN then Color.RED else Color.CURRENT);

#Additional Signals

#Keltner #2
input showCloud = yes;
def factorK2 = 3.25;
def lengthK2 = 20;

def shiftK2 = factorK2 * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK2);
def averageK2 = MovingAverage(averageType, price, lengthK2);
def AvgK2 = averageK2[-displace];
def Upper_BandK2 = averageK2[-displace] + shiftK2[-displace];
def Lower_BandK2 = averageK2[-displace] - shiftK2[-displace];

def condition_BandRevDn = (Upper_BandS > Upper_BandK2);
def condition_BandRevUp = (Lower_BandS < Lower_BandK2);

AddCloud(if showCloud and condition_BandRevUp then Lower_BandK2 else Double.NaN, Lower_BandS, Color.LIGHT_GREEN, color.CURRENT);
AddCloud(if showCloud and condition_BandRevDn then Upper_BandS else Double.NaN, Upper_BandK2, Color.LIGHT_Red, Color.CURRENT);

#Super_OB/OS Signal
def OB_Level = conditionOB1 + conditionOB2 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS2 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

def Consensus_Line = OB_Level - OS_Level;
def Zero_Line = 0;
def Super_OB = 4;
def Super_OS = -3;

def DOWN_OB = (Agreement_Level > Agreement_LevelOB) and (Consensus_Line > Super_OB);
def UP_OS = (Agreement_Level < Agreement_LevelOS) and (Consensus_Line < Super_OS);

def OS_Buy = UP_OS;
def OB_Sell = DOWN_OB;
def neutral = Consensus_Line < Super_OB and Consensus_Line > Super_OS;

#AddVerticalLine (OS_Buy and !OS_Buy[1], close, Color.GREEN, Curve.SHORT_DASH);
#AddVerticalLine (Neutral and !neutral[1], close, Color.Gray, Curve.SHORT_DASH);
#AddVerticalLine (OB_Sell and OB_Sell and !OB_Sell[1], close, Color.RED, Curve.SHORT_DASH);

def Buy_Opportnity = if OS_Buy then Double.POSITIVE_INFINITY else Double.NEGATIVE_INFINITY;
#AddCloud(Buy_Opportnity, Neutral, Color.LIGHT_GREEN, Color.LIGHT_RED);
def Sell_Opportnity = if OB_Sell then Double.POSITIVE_INFINITY else Double.NEGATIVE_INFINITY;
#AddCloud(Sell_Opportnity, Neutral, Color.LIGHT_RED, Color.LIGHT_RED);

plot OB_Signal = Upper_BandS crosses above IntermResistance;
OB_Signal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
OB_Signal.SetLineWeight(3);
OB_Signal.SetDefaultColor(Color.RED);

plot OS_Signal = (condition_BandRevUP) and (Lower_BandS crosses below IntermSupport);
OS_Signal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
OS_Signal.SetLineWeight(3);
OS_Signal.SetDefaultColor(Color.GREEN);

#Squeeze Alert
def length = 20;
def BulgeLength = 150;
def SqueezeLength = 150;
def upperBandBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).UpperBand;
def lowerBandBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).LowerBand;
def midLineBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).MidLine;
def Bandwidth = (upperBandBB - lowerBandBB) / midLineBB * 100;
def Bulge = Highest(Bandwidth, BulgeLength);
def Squeeze = Lowest(Bandwidth, SqueezeLength);

plot Squeeze_Alert = Bandwidth <= Squeeze;
Squeeze_Alert.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
Squeeze_Alert.SetLineWeight(3);
Squeeze_Alert.SetDefaultColor(Color.YELLOW);

#Trend Signals
#Bollinger_Bands2
def lengthBB = 10;
def Num_Dev_DnBB = -0.8;
def Num_Dev_upBB = 0.8;

def price1 = open;
def sDev = StDev(data = price[-displace], length = lengthBB);
def MidLineBB2 = MovingAverage(averageType, data = price[-displace], length = lengthBB);
def LowerBandBB2 = MidLineBB2 + Num_Dev_DnBB * sDev;
def UpperBandBB2 = MidLineBB2 + Num_Dev_upBB * sDev;

plot UPConfirmSignal = Agreement_Level crosses above Confirmation_Factor;
UPConfirmSignal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);
UPConfirmSignal.SetLineWeight(1);
UPConfirmSignal.SetDefaultColor(Color.GREEN);

plot DOWNConfirmSignal = Agreement_Level crosses below Confirmation_Factor;
DOWNConfirmSignal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);
DOWNConfirmSignal.SetLineWeight(1);
DOWNConfirmSignal.SetDefaultColor(Color.RED);

#Labels
def Buy = UP_OS;
def Sell = DOWN_OB;
AddLabel(yes, "Look_To_Buy", if (ConditionK2 and (Agreement_Level < Confirmation_Factor)) then Color.GREEN else Color.GRAY);
AddLabel(yes, "Look_To_Sell", if (ConditionK3 and (Agreement_Level > Confirmation_Factor)) then Color.RED else Color.GRAY);

def MomentumUP = Agreement_Level[1] < Agreement_Level;
def MomentumDOWN = Agreement_Level[1] > Agreement_Level;
AddLabel(yes, "Increasing Momentum", if MomentumUP then Color.GREEN else Color.GRAY);
AddLabel(yes, "Decreasing Momentum", if MomentumDOWN then Color.RED else Color.GRAY);

def conditionBO = ((Upper_BandS[1] < Upper_BandS) and (Lower_BandS[1] < Lower_BandS)) and ((Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK));
AddLabel(yes, "BREAKOUT", if conditionBO then Color.GREEN else Color.GRAY);

def conditionBD = ((Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS) and (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK));
AddLabel(yes, "BREAKDOWN", if conditionBD then Color.RED else Color.GRAY);

def Squeeze_Signal = Squeeze_Alert;
AddLabel(yes, "SQUEEZE ALERT", if Squeeze_Signal then Color.YELLOW else Color.GRAY);

AddLabel(yes, "Confirmation_Level = " + round(Agreement_Level,1), if ((Agreement_Level >= 12) and (Consensus_Line >= 4)) then Color.RED else if ((Agreement_Level <= 3) and (Consensus_Line <= -3)) then Color.Green else color.Gray);

Here is the Confirmation Candles lower study.
Code:
#Confirmation Candles Lower V.10
#Created 04/15/2021 by Christopher84
#Select the level of agreement among the 14 indicators included.
#Last changed 04/20/2021 to V.3 - Removed ChaikinOsc and replaced with STARCBands. Adjusted levels to match upper study. Added OB/OS levels.
#Changed 05/12/2021 to V.9  - dialed in studies to give stronger signals.
#Changed 05/20/2021 to V.10 - Removed Pivot Study and replaced with CIP.

#Keltner Channel
declare lower;
def displace = 0;
def factorK = 2.0;
def lengthK = 20;
def price = close;
input averageType = AverageType.SIMPLE;
input trueRangeAverageType = AverageType.SIMPLE;

def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionKup = price >= Upper_BandK;
def conditionKdown = price <= Lower_BandK;

#MACD with Price
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;
switch (MACD_AverageType) {
case SMA:
Value = Average(price, fastLength) - Average(price, slowLength);
Avg = Average(Value, MACDLength);
case EMA:
Value = fastEMA - slowEMA;
Avg = ExpAverage(Value, MACDLength);}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def conditionRSI_OB = RSI > RSI_OB;
def conditionRSI_OS = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(moneyflow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def conditionMFI_OB = MoneyFlowIndex > MFIover_Bought;
def conditionMFI_OS = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT = MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def conditionFOB = Intermed > FOB;
def conditionFOS = Intermed < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;

#EMA_1
def EMA_length = 12;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp[2] <= AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= zeroline;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def conditionPFE_OB = PFE > UpperLevel;
def conditionPFE_OS = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.Simple;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def conditionBBPB_OB = PercentB > BBPB_OB;
def conditionBBPB_OS = PercentB < BBPB_OS;

#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price=high, length=ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price=low, length=ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def conditionPROSC_OB = PROSC > PROSC_OB;
def conditionPROSC_OS = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
plot Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionKup;

Agreement_Level.AssignValueColor(
if Agreement_Level > Agreement_Level[1] and Agreement_Level >= Confirmation_Factor then Color.LIGHT_GREEN
else if Agreement_Level < Agreement_Level[1] and Agreement_Level >= Confirmation_Factor then Color.LIGHT_GREEN
else if Agreement_Level < Agreement_Level[1] and Agreement_Level < Confirmation_Factor then Color.RED else
if Agreement_Level > Agreement_Level[1] and Agreement_Level < Confirmation_Factor then Color.DARK_RED
else Color.GRAY);

plot Factor_Line = Confirmation_Factor;
Factor_Line.SetStyle(Curve.SHORT_DASH);
Factor_Line.SetLineWeight(1);
Factor_Line.SetDefaultColor(Color.Gray);

plot OB_Level = 12;
OB_Level.SetPaintingStrategy(PaintingStrategy.LINE);
OB_Level.SetLineWeight(1);
OB_Level.SetDefaultColor(Color.RED);

plot OS_Level = 3;
OS_Level.SetPaintingStrategy(PaintingStrategy.LINE);
OS_Level.SetLineWeight(1);
OS_Level.SetDefaultColor(Color.LIGHT_GREEN);

AddCloud(Agreement_Level, OB_Level, Color.RED, Color.CURRENT);
AddCloud(Agreement_Level, OS_Level, Color.CURRENT, Color.LIGHT_GREEN);

CC: Confirmation Consensus

This is a new candle painting indicator CC Candles (Confirmation Consensus), that I have adapted from the original Confirmation Candles. The main difference between the two indicators is that Confirmation Candles confirms only positive factors for upward price movement, and CC Candles utilizes both positive and negative factors of price movement and weighs them against each other to derive the Consensus Level being above 0(up) or below 0 (down). There is a histagram style lower study that goes with it. Check it out! Big thanks to everyone trying out my work and giving feedback.

5QygBoC.png

IwmXDp7.png

Code:
#(Consensus Confirmation) CC Candles V.3
#Created 04/28/2021 by Christopher84
#Based off of the Confirmation Candles Study. Main difference is that CC Candles weigh factors of positive and negative price movement to create the Consensus_Level. The Consensus_Level is considered positive if above zero and negative if below zero.
#Modified to V.2 05/11/2021 - dialed in studies to give stronger signals. Removed reversal buy and sell signals with OB/OS signals. Included OB/OS clouds to indicate favorable zones to buy or take profit. Clouds can also indicate nearterm reversals. Cleaned up code.
#Changed 05/20/2021 to V.3 - Removed Pivot Study and replaced with CIP. Reworked Labels to reflect mean reversion Look to Buy/Look to Sell conditions. Removed Mean Reversion Label. Added new label to show the Confirmation_Level and color coded it to show OB/OS conditions.

#Keltner Channel
declare upper;
def displace = 0;
def factorK = 2.0;
def lengthK = 20;
def price = close;
input averageType = AverageType.SIMPLE;
def trueRangeAverageType = AverageType.SIMPLE;
def BulgeLengthK = 150;
def SqueezeLengthK = 150;
def BulgeLengthK2 = 40;
def SqueezeLengthK2 = 40;
def BulgeLengthPrice = 75;
def SqueezeLengthPrice = 75;
def BulgeLengthPrice2 = 20;
def SqueezeLengthPrice2 = 20;

def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1 = price >= Upper_BandK;
def conditionK2 = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK3D = price < Lower_BandK;
def conditionK4D = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);

def conditionK2L = (Upper_BandK[2] < Upper_BandK[1]) and (Lower_BandK[2] < Lower_BandK[1]);
def conditionK3L = (Upper_BandK[3] < Upper_BandK[2]) and (Lower_BandK[3] < Lower_BandK[2]);
def conditionK3 = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);

def BandwidthK = (Upper_BandK - Lower_BandK) / AvgK * 100;
def condition_BWKUP = BandwidthK[1] < BandwidthK;
def condition_BWKDOWN = BandwidthK[1] > BandwidthK;
def BulgeK = Highest(BandwidthK, BulgeLengthK);
def SqueezeK = Lowest(BandwidthK, SqueezeLengthK);
def BulgeK2 = Highest(BandwidthK, BulgeLengthK2);
def SqueezeK2 = Lowest(BandwidthK, SqueezeLengthK2);

plot IntermResistance = Highest(price, BulgeLengthPrice);
IntermResistance.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
plot IntermSupport = Lowest(price, SqueezeLengthPrice);
IntermSupport.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);

plot NearTResistance = Highest(price, BulgeLengthPrice2);
NearTResistance.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
NearTResistance.SetStyle(Curve.SHORT_DASH);
plot NearTSupport = Lowest(price, SqueezeLengthPrice2);
NearTSupport.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
NearTSupport.SetStyle(Curve.SHORT_DASH);

#MACD with Price
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;
def condition1D = Value[1] > Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def condition2D = (RSI[3] > RSI) is true or (RSI < 20) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def condition3D = (MoneyFlowIndex[2] > MoneyFlowIndex) is true or (MoneyFlowIndex < 20) is true;
def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def condition4D = (Intermed[1] > Intermed) or (NearT < MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;
def condition5D = CIP_DOWN;

#EMA_1
def EMA_length = 12;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);
def condition6D = (price < AvgExp) and (AvgExp[2] > AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp[2] <= AvgExp);
def condition7D = (price < AvgExp2) and (AvgExp[2] > AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;
def condition8D = Osc < ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;
def condition9D = Periods < 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def condition10D = PFE < 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def condition11D = PercentB < HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);
def condition12D = (Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0);
def condition13D = (KVOH < 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def condition14D = PROSC < 50;
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input coloredCandlesOn = yes;
def Confirmation_Factor = 7;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 7;
def Agreement_LevelOS = -7;

def Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionK1 + conditionK2;

def Agreement_LevelD = (condition1D + condition2D + condition3D + condition4D + condition5D + condition6D + condition7D + condition8D + condition9D + condition10D + condition11D + condition12D + condition13D + condition14D + conditionK3D + conditionK4D);

def Consensus_Level = Agreement_Level - Agreement_LevelD;

def UP = Consensus_Level >= 0;
def DOWN = Consensus_Level < 0;

AssignPriceColor(if coloredCandlesOn and UP then Color.LIGHT_GREEN else if coloredCandlesOn and DOWN then Color.RED else Color.CURRENT);

#Additional Signals
#Keltner #2
input showCloud = yes;
def factorK2 = 3.25;
def lengthK2 = 20;

def shiftK2 = factorK2 * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK2);
def averageK2 = MovingAverage(averageType, price, lengthK2);
def AvgK2 = averageK2[-displace];
def Upper_BandK2 = averageK2[-displace] + shiftK2[-displace];
def Lower_BandK2 = averageK2[-displace] - shiftK2[-displace];
def condition_BandRevDn = (Upper_BandS > Upper_BandK2);
def condition_BandRevUp = (Lower_BandS < Lower_BandK2);

AddCloud(if showCloud and condition_BandRevUp then Lower_BandK2 else Double.NaN,  Lower_BandS,  Color.LIGHT_GREEN,  Color.CURRENT);
AddCloud(if showCloud and condition_BandRevDn then Upper_BandS else Double.NaN,  Upper_BandK2,  Color.LIGHT_RED,  Color.CURRENT);

#Super_OB/OS Signal
def OB_Level = conditionOB1 + conditionOB2 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS2 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

def Consensus_Line = OB_Level - OS_Level;
def Zero_Line = 0;
def Super_OB = 4;
def Super_OS = -4;

def DOWN_OB = (Agreement_Level > Agreement_LevelOB) and (Consensus_Line > Super_OB);
def UP_OS = (Agreement_Level < Agreement_LevelOS) and (Consensus_Line < Super_OS);

def OS_Buy = UP_OS;
def OB_Sell = DOWN_OB;
def neutral = Consensus_Line < Super_OB and Consensus_Line > Super_OS;

#AddVerticalLine (OS_Buy and !OS_Buy[1], close, Color.GREEN, Curve.SHORT_DASH);
#AddVerticalLine (Neutral and !neutral[1], close, Color.Gray, Curve.SHORT_DASH);
#AddVerticalLine (OB_Sell and OB_Sell and !OB_Sell[1], close, Color.RED, Curve.SHORT_DASH);

def Buy_Opportnity = if OS_Buy then Double.POSITIVE_INFINITY else Double.NEGATIVE_INFINITY;
#AddCloud(Buy_Opportnity, Neutral, Color.LIGHT_GREEN, Color.LIGHT_RED);
def Sell_Opportnity = if OB_Sell then Double.POSITIVE_INFINITY else Double.NEGATIVE_INFINITY;
#AddCloud(Sell_Opportnity, Neutral, Color.LIGHT_RED, Color.LIGHT_RED);

plot OB_Signal = Upper_BandS crosses above IntermResistance;
OB_Signal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
OB_Signal.SetLineWeight(3);
OB_Signal.SetDefaultColor(Color.RED);

plot OS_Signal = (condition_BandRevUp) and (Lower_BandS crosses below IntermSupport);
OS_Signal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
OS_Signal.SetLineWeight(3);
OS_Signal.SetDefaultColor(Color.GREEN);

#Squeeze Alert
def length = 20;
def BulgeLength = 150;
def SqueezeLength = 150;
def upperBandBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).UpperBand;
def lowerBandBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).LowerBand;
def midLineBB = BollingerBands(price, displace, length, Num_Dev_Dn, Num_Dev_up, averageType).MidLine;
def Bandwidth = (upperBandBB - lowerBandBB) / midLineBB * 100;
def Bulge = Highest(Bandwidth, BulgeLength);
def Squeeze = Lowest(Bandwidth, SqueezeLength);

plot Squeeze_Alert = Bandwidth <= Squeeze;
Squeeze_Alert.SetPaintingStrategy(PaintingStrategy.BOOLEAN_POINTS);
Squeeze_Alert.SetLineWeight(3);
Squeeze_Alert.SetDefaultColor(Color.YELLOW);

#Trend Signals
#Bollinger_Bands2
def lengthBB = 10;
def Num_Dev_DnBB = -0.8;
def Num_Dev_upBB = 0.8;

def price1 = open;
def sDev = StDev(data = price[-displace], length = lengthBB);
def MidLineBB2 = MovingAverage(averageType, data = price[-displace], length = lengthBB);
def LowerBandBB2 = MidLineBB2 + Num_Dev_DnBB * sDev;
def UpperBandBB2 = MidLineBB2 + Num_Dev_upBB * sDev;

plot UPConfirmSignal = Consensus_Level crosses above 0;
UPConfirmSignal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_UP);
UPConfirmSignal.SetLineWeight(1);
UPConfirmSignal.SetDefaultColor(Color.GREEN);

plot DOWNConfirmSignal = Consensus_Level crosses below 0;
DOWNConfirmSignal.SetPaintingStrategy(PaintingStrategy.BOOLEAN_ARROW_DOWN);
DOWNConfirmSignal.SetLineWeight(1);
DOWNConfirmSignal.SetDefaultColor(Color.RED);

#Labels
def Buy = UP_OS;
def Sell = DOWN_OB;
AddLabel(yes, "Look_To_Buy", if (ConditionK2 and (Consensus_Level < 0)) then Color.GREEN else Color.GRAY);
AddLabel(yes, "Look_To_Sell", if (ConditionK3 and (Consensus_Level > 0)) then Color.RED else Color.GRAY);

def MomentumUP = Consensus_Level[1] < Consensus_Level;
def MomentumDOWN = Consensus_Level[1] > Consensus_Level;
AddLabel(yes, "Increasing Momentum", if MomentumUP then Color.GREEN else Color.GRAY);
AddLabel(yes, "Decreasing Momentum", if MomentumDOWN then Color.RED else Color.GRAY);

def conditionBO = ((Upper_BandS[1] < Upper_BandS) and (Lower_BandS[1] < Lower_BandS)) and ((Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK));
AddLabel(yes, "BREAKOUT", if conditionBO then Color.GREEN else Color.GRAY);

def conditionBD = ((Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS) and (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK));
AddLabel(yes, "BREAKDOWN", if conditionBD then Color.RED else Color.GRAY);

def Squeeze_Signal = Squeeze_Alert;
AddLabel(yes, "SQUEEZE ALERT", if Squeeze_Signal then Color.YELLOW else Color.GRAY);

AddLabel(yes, "Consensus_Level = " + round(Consensus_Level,1), if ((Consensus_Level >= 12) and (Consensus_Line >= 4)) then Color.RED else if ((Consensus_Level <= -12) and (Consensus_Line <= -3)) then Color.Green else color.Gray);

Here's the lower study.
gWWYe5M.png

Code:
#CC Candles Lower V.2
#Created 04/28/2021 by Christopher84
#Modified to V.2 05/11/2021 - dialed in studies to give stronger signals. Included OB/OS Clouds and cleaned up code.
#Changed 05/20/2021 to V.3 - Removed Pivot Study and replaced with CIP.

#Keltner Channel
declare lower;
def displace = 0;
def factorK = 2.0;
def lengthK = 20;
def price = close;
input averageType = AverageType.SIMPLE;
def trueRangeAverageType = AverageType.SIMPLE;
def BulgeLengthK = 150;
def SqueezeLengthK = 150;
def BulgeLengthK2 = 40;
def SqueezeLengthK2 = 40;
def BulgeLengthPrice = 75;
def SqueezeLengthPrice = 75;
def BulgeLengthPrice2 = 20;
def SqueezeLengthPrice2 = 20;
def BulgeLengthCC = 40;
def SqueezeLengthCC = 40;
def BulgeLengthCC2 = 8;
def SqueezeLengthCC2 = 8;

def shift = factorK * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), lengthK);
def averageK = MovingAverage(averageType, price, lengthK);
def AvgK = averageK[-displace];
def Upper_BandK = averageK[-displace] + shift[-displace];
def Lower_BandK = averageK[-displace] - shift[-displace];

def conditionK1 = price >= Upper_BandK;
def conditionK2 = (Upper_BandK[1] < Upper_BandK) and (Lower_BandK[1] < Lower_BandK);
def conditionK3D = price < Lower_BandK;
def conditionK4D = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);

def conditionK2L = (Upper_BandK[2] < Upper_BandK[1]) and (Lower_BandK[2] < Lower_BandK[1]);
def conditionK3L = (Upper_BandK[3] < Upper_BandK[2]) and (Lower_BandK[3] < Lower_BandK[2]);
def conditionK3 = (Upper_BandK[1] > Upper_BandK) and (Lower_BandK[1] > Lower_BandK);

def BandwidthK = (Upper_BandK - Lower_BandK) / AvgK * 100;
def condition_BWKUP = BandwidthK[1] < BandwidthK;
def condition_BWKDOWN = BandwidthK[1] > BandwidthK;
def BulgeK = Highest(BandwidthK, BulgeLengthK);
def SqueezeK = Lowest(BandwidthK, SqueezeLengthK);
def BulgeK2 = Highest(BandwidthK, BulgeLengthK2);
def SqueezeK2 = Lowest(BandwidthK, SqueezeLengthK2);

#MACD with Price
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;
switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg = ExpAverage(Value, MACDLength);
}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;
def condition1D = Value[1] > Value;

#RSI
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;
def condition2D = (RSI[3] > RSI) is true or (RSI < 20) is true;
def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;


#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(MoneyFlow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;
def condition3D = (MoneyFlowIndex[2] > MoneyFlowIndex) is true or (MoneyFlowIndex < 20) is true;
def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);
def condition4D = (Intermed[1] > Intermed) or (NearT < MidLine);
def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;
def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Change in Price
def lengthCIP = 5;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);

def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;
def condition5D = CIP_DOWN;

#EMA_1
def EMA_length = 12;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);
def condition6D = (price < AvgExp) and (AvgExp[2] > AvgExp);

#EMA_2
def EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp[2] <= AvgExp);
def condition7D = (price < AvgExp2) and (AvgExp[2] > AvgExp);

#DMI Oscillator
def DMI_length = 5;#Typically set to 10
input DMI_averageType = AverageType.WILDERS;
def diPlus = DMI(DMI_length, DMI_averageType)."DI+";
def diMinus = DMI(DMI_length, DMI_averageType)."DI-";
def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;
def condition8D = Osc < ZeroLine;

#Trend_Periods
def TP_fastLength = 3;#Typically 7
def TP_slowLength = 4;#Typically 15
def Periods = Sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;
def condition9D = Periods < 0;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / Sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > 0;
def condition10D = PFE < 0;
def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.SIMPLE;
def BBPB_length = 20;#Typically 20
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > HalfLine;
def condition11D = PercentB < HalfLine;
def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;


#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS);
def condition12D = (Upper_BandS[1] > Upper_BandS) and (Lower_BandS[1] > Lower_BandS);

#Klinger Histogram
def Klinger_Length = 13;
def KVOsc = KlingerOscillator(Klinger_Length).KVOsc;
def KVOH = KVOsc - Average(KVOsc, Klinger_Length);
def condition13 = (KVOH > 0);
def condition13D = (KVOH < 0);

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition14 = PROSC > 50;
def condition14D = PROSC < 50;
def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#Trend Confirmation Calculator
#Confirmation_Factor range 1-15.
input coloredCandlesOn = no;
def Confirmation_Factor = 0;
#Use for testing conditions individually. Remove # from line below and change Confirmation_Factor to 1.
#def Agreement_Level = condition1;
def Agreement_LevelOB = 10;
def Agreement_LevelOS = -10;

def Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13 + condition14 + conditionK1 + conditionK2;

def Agreement_LevelD = (condition1D + condition2D + condition3D + condition4D + condition5D + condition6D + condition7D + condition8D + condition9D + condition10D + condition11D + condition12D + condition13D + condition14D + conditionK3D + conditionK4D);

plot Consensus_Level = Agreement_Level - Agreement_LevelD;

def conditionChannel1 = Upper_BandK > price;
def conditionChannel2 = Lower_BandK < price;

def UP = Consensus_Level >= 0;
def DOWN = Consensus_Level < 0;

Consensus_Level.AssignValueColor(
if Consensus_Level > Consensus_Level[1] and Consensus_Level >= 0 then Color.LIGHT_GREEN
else if Consensus_Level < Consensus_Level[1] and Consensus_Level >= 0 then Color.LIGHT_GREEN
else if Consensus_Level < Consensus_Level[1] and Consensus_Level < 0 then Color.RED else
if Consensus_Level > Consensus_Level[1] and Consensus_Level < 0 then Color.RED
else Color.GRAY);

def Zero_Line = 0;

AddCloud(Consensus_Level, Agreement_LevelOB, Color.LIGHT_RED, Color.CURRENT);
AddCloud(Consensus_Level, Agreement_LevelOS, Color.CURRENT, Color.LIGHT_GREEN);

plot BulgeCC = Highest(Consensus_Level, BulgeLengthCC);
BulgeCC.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);

plot SqueezeCC = Lowest(Consensus_Level, SqueezeLengthCC);
SqueezeCC.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);

plot BulgeCC2 = Highest(Consensus_Level, BulgeLengthCC2);
BulgeCC2.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
BulgeCC2.SetStyle(Curve.SHORT_DASH);

plot SqueezeCC2 = Lowest(Consensus_Level, SqueezeLengthCC2);
SqueezeCC2.AssignValueColor(if (conditionK2) then Color.GREEN else if (conditionK3) then Color.RED else Color.GRAY);
SqueezeCC2.SetStyle(Curve.SHORT_DASH);

Here is a custom watchlist column for the Confirmation Candles. If you sort the column, it makes it easier to see OB/OS conditions. Especially when grouped with the Super OB/OS custom watchlist column which is also posted below.
oBocGCU.png

Code:
#Confirmation Level Watchlist developed 04/15/2021 by Christopher Wilson
#Select the level of agreement among the 15 indicators included.
#Changed 05/20/21 Included CIP.

#MACD with Price
declare lower;
def price = close;
def fastLength = 12;
def slowLength = 26;
def MACDLength = 9;
input MACD_AverageType = {SMA, default EMA};
def MACDLevel = 0.0;

def fastEMA = ExpAverage(price, fastLength);
def slowEMA = ExpAverage(price, slowLength);
def Value;
def Avg;

switch (MACD_AverageType) {
case SMA:
    Value = Average(price, fastLength) - Average(price, slowLength);
    Avg = Average(Value, MACDLength);
case EMA:
    Value = fastEMA - slowEMA;
    Avg = ExpAverage(Value, MACDLength);}
def Diff = Value - Avg;
def Level = MACDLevel;

def condition1 = Value[1] <= Value;

#RSI
input RSI_length = 14;
input RSI_AverageType = AverageType.WILDERS;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def condition2 = (RSI[3] < RSI) is true or (RSI >= 80) is true;

#MFI
input MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(moneyflow(high, close, low, volume, MFI_Length), movingAvgLength);
def MFIOverBought = MFIover_Bought;
def MFIOverSold = MFIover_Sold;

def condition3 = (MoneyFlowIndex[2] < MoneyFlowIndex) is true or (MoneyFlowIndex > 85) is true;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def condition4 = (Intermed[1] <= Intermed) or (NearT >= MidLine);

#Change in Price
def lengthCIP = 5;
def displace = 0;
def CIP = (price - price[1]);
def AvgCIP = ExpAverage(CIP[-displace], lengthCIP);
def CIP_UP = AvgCIP > AvgCIP[1];
def CIP_DOWN = AvgCIP < AvgCIP[1];

def condition5 = CIP_UP;

#EMA_1
input EMA_length = 12;
def AvgExp = ExpAverage(price[-displace], EMA_length);

def condition6 = (price >= AvgExp) and (AvgExp[2] <= AvgExp);

#EMA_2
input EMA_2length = 20;
def displace2 = 0;
def AvgExp2 = ExpAverage(price[-displace2], EMA_2length);

def condition7 = (price >= AvgExp2) and (AvgExp2[2] <= AvgExp2);

#DMI Oscillator
input DMI_length = 5;
input averageType = AverageType.WILDERS;

def diPlus = DMI(DMI_length, averageType)."DI+";
def diMinus = DMI(DMI_length, averageType)."DI-";

def Osc = diPlus - diMinus;
def Hist = Osc;
def ZeroLine = 0;

def condition8 = Osc >= ZeroLine;

#Trend_Periods
input TP_fastLength = 3;
input TP_slowLength = 4;

def Periods = sign(ExpAverage(close, TP_fastLength) - ExpAverage(close, TP_slowLength));

def condition9 = Periods > 0;

#Polarized Fractal Efficiency
input PFE_length = 5;
input smoothingLength = 2.5;

def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);

def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def condition10 = PFE > ZERoLine;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.Simple;
input BBPB_length = 20;
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;

def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;

def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def condition11 = PercentB > 50;

#STARC Bands
def ATR_length = 15;
def SMA_lengthS = 6;
def multiplier_factor = 1.25;
def valS = Average(price, SMA_lengthS);
def average_true_range = Average(TrueRange(high, close, low), length = ATR_length);
def Upper_BandS = valS[-displace] + multiplier_factor * average_true_range[-displace];
def Middle_BandS = valS[-displace];
def Lower_BandS = valS[-displace] - multiplier_factor * average_true_range[-displace];

def condition12 = (Upper_BandS[1] <= Upper_BandS) and (Lower_BandS[1] <= Lower_BandS); 

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price = high, length = ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price = low, length = ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def condition13 = (PROSC > 50);

#Trend Confirmation
#Confirmation_Factor range 1-13.
input Confirmation_Factor = 7;
#Use for testing conditions individually.
#def Agreement_Level = condition1;
plot Agreement_Level = condition1 + condition2 + condition3 + condition4 + condition5 + condition6 + condition7 + condition8 + condition9 + condition10 + condition11 + condition12 + condition13;

def Sell_Alert = Agreement_Level >= 9;
def Buy_Alert = Agreement_Level <= 2 ;


def Factor_Line = Confirmation_Factor;

AssignBackgroundColor(if Sell_Alert then color.LIGHT_RED else if Buy_Alert then color.dark_green else color.black);

Here is the Super OB/OS custom watchlist column.
Code:
#Super_OB_OS_Lower
#Created by Christopher84 04/22/2021
#Modified 5/12/2021 Adjusted OB/OS levels.

declare lower;
def BulgeLength = 75;
def SqueezeLength = 75;
def BulgeLength2 = 8;
def SqueezeLength2 = 8;

#RSI
def price = close;
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(moneyflow(high, close, low, volume, MFI_Length), movingAvgLength);

def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;

def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.Simple;
def displace = 0;
def BBPB_length = 20;
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price=high, length=ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price=low, length=ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#OB/OS Calculation

def OB_Level = conditionOB1 + conditionOB2 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS2 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

plot Consensus_Line = OB_Level - OS_Level;

def Zero_Line = 0;
def Super_OB = 4;
def Super_OS = -3;

def OB = Consensus_Line >= Super_OB;
def OS = Consensus_Line <= Super_OS;

AssignBackgroundColor(if OB then color.light_red else if OS then color.dark_green else color.black);

For those of you that are intrested, here is the Super OB/OS lower indicator.
wea6B5x.png

gKaEnqX.png

Code:
#Super_OB_OS_Lower
#Created by Christopher84 04/22/2021
#Modified 5/12/2021 Included dynamic support and resistance. Adjusted OB/OS levels.

declare lower;
def BulgeLength = 75;
def SqueezeLength = 75;
def BulgeLength2 = 8;
def SqueezeLength2 = 8;

#RSI
def price = close;
def RSI_length = 14;
def RSI_AverageType = AverageType.WILDERS;
def RSI_OB = 70;
def RSI_OS = 30;

def NetChgAvg = MovingAverage(RSI_AverageType, price - price[1], RSI_length);
def TotChgAvg = MovingAverage(RSI_AverageType, AbsValue(price - price[1]), RSI_length);
def ChgRatio = if TotChgAvg != 0 then NetChgAvg / TotChgAvg else 0;
def RSI = 50 * (ChgRatio + 1);

def conditionOB1 = RSI > RSI_OB;
def conditionOS1 = RSI < RSI_OS;

#MFI
def MFI_Length = 14;
def MFIover_Sold = 20;
def MFIover_Bought = 80;
def movingAvgLength = 1;
def MoneyFlowIndex = Average(moneyflow(high, close, low, volume, MFI_Length), movingAvgLength);

def conditionOB2 = MoneyFlowIndex > MFIover_Bought;
def conditionOS2 = MoneyFlowIndex < MFIover_Sold;

#Forecast
def na = Double.NaN;
def MidLine = 50;
def Momentum = MarketForecast().Momentum;
def NearT =  MarketForecast().NearTerm;
def Intermed = MarketForecast().Intermediate;
def FOB = 80;
def FOS = 20;
def upperLine = 110;

def conditionOB3 = Intermed > FOB;
def conditionOS3 = Intermed < FOS;

def conditionOB4 = NearT > FOB;
def conditionOS4 = NearT < FOS;

#Polarized Fractal Efficiency
def PFE_length = 5;#Typically 10
def smoothingLength = 2.5;#Typically 5
def PFE_diff = close - close[PFE_length - 1];
def val = 100 * Sqrt(Sqr(PFE_diff) + Sqr(PFE_length)) / sum(Sqrt(1 + Sqr(close - close[1])), PFE_length - 1);
def PFE = ExpAverage(if PFE_diff > 0 then val else -val, smoothingLength);
def UpperLevel = 50;
def LowerLevel = -50;

def conditionOB5 = PFE > UpperLevel;
def conditionOS5 = PFE < LowerLevel;

#Bollinger Bands PercentB
input BBPB_averageType = AverageType.Simple;
def displace = 0;
def BBPB_length = 20;
def Num_Dev_Dn = -2.0;
def Num_Dev_up = 2.0;
def BBPB_OB = 100;
def BBPB_OS = 0;
def upperBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).UpperBand;
def lowerBand = BollingerBands(price, displace, BBPB_length, Num_Dev_Dn, Num_Dev_up, BBPB_averageType).LowerBand;
def PercentB = (price - lowerBand) / (upperBand - lowerBand) * 100;
def HalfLine = 50;
def UnitLine = 100;

def conditionOB6 = PercentB > BBPB_OB;
def conditionOS6 = PercentB < BBPB_OS;

#Projection Oscillator
def ProjectionOsc_length = 30;#Typically 10
def MaxBound = HighestWeighted(high, ProjectionOsc_length, LinearRegressionSlope(price=high, length=ProjectionOsc_length));
def MinBound = LowestWeighted(low, ProjectionOsc_length, LinearRegressionSlope(price=low, length=ProjectionOsc_length));
def ProjectionOsc_diff = MaxBound - MinBound;
def PROSC = if ProjectionOsc_diff != 0 then 100 * (close - MinBound) / ProjectionOsc_diff else 0;
def PROSC_OB = 80;
def PROSC_OS = 20;

def conditionOB7 = PROSC > PROSC_OB;
def conditionOS7 = PROSC < PROSC_OS;

#OB/OS Calculation

def OB_Level = conditionOB1 + conditionOB2 + conditionOB3 + conditionOB4 + conditionOB5 + conditionOB6 + conditionOB7;
def OS_Level = conditionOS1 + conditionOS2 + conditionOS3 + conditionOS4 + conditionOS5 + conditionOS6 + conditionOS7;

plot Consensus_Line = OB_Level - OS_Level;

def Zero_Line = 0;

plot Bulge = Highest(Consensus_Line, BulgeLength);
bulge.SetPaintingStrategy(PaintingStrategy.LINE);
bulge.SetLineWeight(1);
bulge.SetDefaultColor(Color.RED);

plot Squeeze = Lowest(Consensus_Line, SqueezeLength);
Squeeze.SetPaintingStrategy(PaintingStrategy.LINE);
Squeeze.SetLineWeight(1);
Squeeze.SetDefaultColor(Color.LIGHT_GREEN);

plot Bulge2 = Highest(Consensus_Line, BulgeLength2);
bulge2.SetPaintingStrategy(PaintingStrategy.LINE);
bulge2.SetStyle(Curve.SHORT_DASH);
bulge2.SetLineWeight(1);
bulge2.SetDefaultColor(Color.GRAY);

plot Squeeze2 = Lowest(Consensus_Line, SqueezeLength2);
Squeeze2.SetPaintingStrategy(PaintingStrategy.LINE);
Squeeze2.SetStyle(Curve.SHORT_DASH);
Squeeze2.SetLineWeight(1);
Squeeze2.SetDefaultColor(Color.GRAY);

input Super_OB = 4;
input Super_OS = -3;

Consensus_Line.AssignValueColor(
if Consensus_Line > Consensus_Line[1] and Consensus_Line >= Zero_Line then Color.LIGHT_GREEN
else if Consensus_Line < Consensus_Line[1] and Consensus_Line >= Zero_Line then Color.LIGHT_GREEN
else if Consensus_Line < Consensus_Line[1] and Consensus_Line < Zero_Line then Color.RED else
if Consensus_Line > Consensus_Line[1] and Consensus_Line < Zero_Line then Color.RED
else Color.GRAY);


AddCloud(Consensus_Line, Super_OB, Color.LIGHT_RED, Color.CURRENT);
AddCloud(Consensus_Line, Super_OS, Color.CURRENT, Color.LIGHT_GREEN);


Hi Christopher84,

I am not sure if it is possible to add buying and selling arrows in CC: Confirmation Consensus and ob/os lower study?

Thanks
Madhu
 
@Christopher84, thank you for all the hard work and time you have put into this awesome indicator....I love it! I'm using CC Candles V3. I read your last response about increasing the conformation level. I too, like the 1min. chart. Is there anything I need to change/adjust for using this time frame? Again, thank you for all your work, help and answers to questions!
For right now I would try those suggestions. Let me know how they workout. I am sure it can be figured out.
 
Hi Christopher84,

I am not sure if it is possible to add buying and selling arrows in CC: Confirmation Consensus and ob/os lower study?

Thanks
Madhu
Yes it can be done, but I worry it could cause too many signals to be firing and cause confusion. Let me conjure on that one a bit more.
 
not sure if you will find this valuable but in your cloud watchlist column, the avg number wasn't meaning much to me, so i removed it and in its stead placed a counter for the number of periods the green or red state has been ongoing, if any. i have an exceedingly hard time seeing the clouds on the chart itself, especially when the cloud is but one or two periods old (especially one, of course), so having its age along with the color on the watchlist column is a boon, imho. anyway, i think i've got it coded right but perhaps one of my betters could confirm.

p.s. if'n you can't tell, i have an aversion to cap letters (made worse by an odd case of arthritis) hence my addition below doesn't use them, and it doesn't seem to make a diff.


Code:
#Keltner_STARC_WL

#Keltner
declare weak_volume_dependency;
input displace = 0;
input factor = 3.25;
input length = 20;
input price = close;
input averageType = AverageType.SIMPLE;
input trueRangeAverageType = AverageType.SIMPLE;

def shift = factor * MovingAverage(trueRangeAverageType, TrueRange(high, close, low), length);
def average = MovingAverage(averageType, price, length);

plot Avg = average[-displace];

def Upper_BandK = average[-displace] + shift[-displace];
def Lower_BandK = average[-displace] - shift[-displace];

#STARC
input ATR_length = 15;
input SMA_length = 6;
input multiplier_factor = 1.25;

def val = Average(price, sma_length);
def average_true_range = Average(TrueRange(high, close, low), length = atr_length);
def Upper_BandS = val[-displace] + multiplier_factor * average_true_range[-displace];
def Lower_BandS = val[-displace] - multiplier_factor * average_true_range[-displace];

def UP = Lower_BandS < Lower_BandK;
def DOWN = Upper_BandS > Upper_BandK;

AssignBackgroundColor(if DOWN then color.LIGHT_RED else if UP then color.dark_green else color.black);

def upcounter = if up then upcounter[1] + 1 else if !up then 0 else upcounter[1];
def downcounter = if down then downcounter[1] + 1 else if !down then 0 else downcounter[1];

addlabel (yes, if up then "" + upcounter else "" + downcounter);

DjEjJvX.png
Hi floydddd!
Thank you for sharing! Definitely an interesting idea. I don’t really care for the average being in there either. Ultimately my plan is to show the price where the cloud starts/stops since these levels can act as support or resistance. I will be making some modifications in the watchlist very soon.
 
@Christopher84 . I played around but I couldn't get the signal on a 1 minute chart, went all the way to 15 on the conformation setting, changed ema and dmi to see if that helps but didn't. I have been using Trend reversal for a while, yes it does repaint but it's a great indicator. Without changing anything it works on any time frame. Is there something you can pull out of that script?
 
@Christopher84 . I played around but I couldn't get the signal on a 1 minute chart, went all the way to 15 on the conformation setting, changed ema and dmi to see if that helps but didn't. I have been using Trend reversal for a while, yes it does repaint but it's a great indicator. Without changing anything it works on any time frame. Is there something you can pull out of that script?
Can you post a screenshot so I can have a better understanding of the issue?
 
Hi floydddd!
Thank you for sharing! Definitely an interesting idea. I don’t really care for the average being in there either. Ultimately my plan is to show the price where the cloud starts/stops since these levels can act as support or resistance. I will be making some modifications in the watchlist very soon.
makes sense to me. maybe if you go the cloud price route, you could also add a color to the mix that shows up only when a change-of-state has just or recently occurred. would make such changes easier to spot when scanning a long list and remove relying on memory or having to look from the watchlist to the chart proper and back again. just a thought. keep up the most excellent work!
 
I'm not sure how to post pictures but with any settings I get lots of up and down arrows . So for now I'm using your labels, cloud and over sold over bought dots .
Hi s1111,
I took a look at TSLA on the 1 minute chart this morning and there is more noise on the 1 minute chart (there will be for any indicator), however when looking at it in context of the trend environment (the color of the channels) its 100% manageable. In this image I am using the CC Candles.
9K9hbBH.png
 
Hi Christopher, I'm enjoying your indicator with good results. I have a question regarding the Confirmation Level Label, what does it mean when it turns gray, and what does it mean when it turns red. Also what the difference between the Confirmation Factor and the Confirmation Label on the chart. Is there an explaination of the labels are signifying. Also would you consider adding a volume componet to the code or does that make sense. Thanks again for all your work on this, much appreciated.
 
Hi Christopher84, i have just started playing around with CC v3.0.
Could u please explain what does the consensus label signify when it shows 11? or say 0?
I was trying to decipher your code -> AddLabel(yes, "Consensus_Level = " + round(Consensus_Level,1), if ((Consensus_Level >= 12) and (Consensus_Line >= 4)) then Color.RED else if ((Consensus_Level <= -12) and (Consensus_Line <= -3)) then Color.Green else color.Gray);

but don't quite comprehend.
 
WOW @Christopher84 . Cloud was spot on on a 1 minute chart !! Looks like I will be scalping with your cloud lol . On a TSLA 1 minute chart 6:30 green cloud came and 7:40 red cloud was perfect entry and exit . I got out way earlier, will test it out tomorrow. Thank you for all your hard work!!
 
Volume component would be awesome!!



Hi Christopher, I'm enjoying your indicator with good results. I have a question regarding the Confirmation Level Label, what does it mean when it turns gray, and what does it mean when it turns red. Also what the difference between the Confirmation Factor and the Confirmation Label on the chart. Is there an explaination of the labels are signifying. Also would you consider adding a volume componet to the code or does that make sense. Thanks again for all your work on this, much appreciated.
 
Hi Everyone!
Just wanted to let you know that the newest version of Confirmation Candles and CC Candles (upper and lower studies) have been posted on page 1 along with an update for the Confirmation Level watchlist column. The main changes include adding a new study and reworking some of the labels. Mean Reversion label has been removed and incorporated into the Look To Buy/Look To Sell labels to help indicate confident high probability entry/exit points indicative of the trend environment. I have also included a label to show the Confirmation Level or the Consensus Level (depending on the indicator you are using). This label will go green when price is in an oversold condition and red when in an overbought condition. This can help reduce the need to use the lower indicators and saves some valuable real estate on your screen. I hope everyone likes the new changes. Thanks to everyone for your feedback!
When the conformation level is gray (Confirmation_Level = 14) what does this mean? Is it saying the 14 indicators are in agreement to the upside or down side? What does the number mean? Thanks
 
Hi Christopher84, i have just started playing around with CC v3.0.
Could u please explain what does the consensus label signify when it shows 11? or say 0?
I was trying to decipher your code -> AddLabel(yes, "Consensus_Level = " + round(Consensus_Level,1), if ((Consensus_Level >= 12) and (Consensus_Line >= 4)) then Color.RED else if ((Consensus_Level <= -12) and (Consensus_Line <= -3)) then Color.Green else color.Gray);

but don't quite comprehend.
Hi VickyVJ!
The label is showing the Consensus Level. When it goes green it means both the Consensus Level and the Super OB/OS are indicating price is in an oversold condition. If it’s red, price is in an overbought condition. If it’s gray, price is neither OS or OB. Hope that helps!
 

Not the exact question you're looking for?

Start a new thread and receive assistance from our community.

87k+ Posts
311 Online
Create Post

The Market Trading Game Changer

Join 2,500+ subscribers inside the useThinkScript VIP Membership Club
  • Exclusive indicators
  • Proven strategies & setups
  • Private Discord community
  • ‘Buy The Dip’ signal alerts
  • Exclusive members-only content
  • Add-ons and resources
  • 1 full year of unlimited support

Frequently Asked Questions

What is useThinkScript?

useThinkScript is the #1 community of stock market investors using indicators and other tools to power their trading strategies. Traders of all skill levels use our forums to learn about scripting and indicators, help each other, and discover new ways to gain an edge in the markets.

How do I get started?

We get it. Our forum can be intimidating, if not overwhelming. With thousands of topics, tens of thousands of posts, our community has created an incredibly deep knowledge base for stock traders. No one can ever exhaust every resource provided on our site.

If you are new, or just looking for guidance, here are some helpful links to get you started.

What are the benefits of VIP Membership?
VIP members get exclusive access to these proven and tested premium indicators: Buy the Dip, Advanced Market Moves 2.0, Take Profit, and Volatility Trading Range. In addition, VIP members get access to over 50 VIP-only custom indicators, add-ons, and strategies, private VIP-only forums, private Discord channel to discuss trades and strategies in real-time, customer support, trade alerts, and much more. Learn all about VIP membership here.
How can I access the premium indicators?
To access the premium indicators, which are plug and play ready, sign up for VIP membership here.
Back
Top