Outlier Detecting Cumulative Moving Average (ODCMA) for ThinkOrSwim

samer800

Moderator - Expert
VIP
Lifetime
wUfNkoj.png

Creator Message:
This is a simple moving average with a rolling length that resets whenever there is an outlier in the data. I have also included volume weighting.

The length represents the lookback period for the outlier detection and the "Outlier Detection" is the deviation level to trigger the detection. You can select from: price detection, volume detection, price or volume detection, price and volume detection.

I hope you can find this script useful. Its like a session weighted moving average but instead it retriggers the cumulative sum whenever there is an outlier.

CODE:
CSS:
#// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
#// © peacefulLizard50262
#indicator("ODCMA", overlay = true)
# Converted by Sam4Cok@Samer800 - 01/2023
input src = close;#, "Source")
input smoothing = 0;#, "Smoothing", 0)
input weight = {default "Volume Weighting", "No Volume Weighting"};#, "Volume Weighting")
input swch = {"Price", "Volume", "Price or Volume", default "Price and Volume", "Pivot Point"};# "Outlier Detection"
input len = 30;#, "Outlier Length", 2)
input max = 3;#, "Outlier Detection Level", 0)
input other = no;#, "True Range Detection", "Enable to use true range instead of standard deviation")
input length = 100;#, "True Range Normalization Length")

input leftLenH  = 10;    # "Pivot High", 1, inline="Pivot High", group= "Pivot Points")
input rightLenH = 10;    # "Pivot High", group= "Pivot Points")
input leftLenL  = 10;    # "Pivot Low", 1, inline="Pivot Low", group= "Pivot Points")
input rightLenL = 10;    # "Pivot Low", group= "Pivot Points")

def na = Double.NaN;
script nz {
    input data  = close;
    input repl  = 0;
    def ret_val = if data==0 then repl else data;
    plot return = ret_val;
}
#filter(float src, int len = 1) =>
script filter {
    input src = close;
    input len = 0;
    def filter;
    filter = TotalSum((src + (src[1] * 2) + (src[2] * 2) + src[3]) / 6);
    def filt = if len > 0 then (filter - filter[len]) / len else src;
    plot return = filt;
}
#normalize(float src, int len) =>
script normalize {
    input src = close;
    input len = 100;
    def out = (src - Lowest(src, len)) / (Highest(src, len) - Lowest(src, len));
    plot return =  out;
}
#outlier(series float source, int periods = 30, float max = 2, int length = 100, bool other = false) =>
script outlier {
    input source = close;
    input periods = 30;
    input max = 3;
    input length = 100;
    input other = no;
    def difHL = high - low;
    def norm = normalize(difHL, length);
    def difSrc = source - source[1];
    def out = AbsValue(((difSrc) / Sqrt((Sum(Power(difSrc, 2), periods) -
              Power(difSrc, 2)) / (periods - 2))));
    def tr = if open > close then -norm else norm;
    def outlier_tr = if tr > 0.5 then 1 else if tr < -0.5 then 1 else 0;
    def outlier = out >= max;
    def outl = if other then outlier_tr else outlier;
    plot return = outl;
}
#outlier_volume(series float source, int periods = 30, float max = 2, int length = 100, bool other = false) =>
script outlier_volume {
  input periods = 30;
  input max = 3;
  input length = 100;
  input other = no;
    def difSrc = volume - volume[1];
    def volume_high = if open < close then  volume else 0;
    def volume_low  = if open > close then -volume else 0;
    def difHL = volume_high - volume_low;
    def norm = normalize(difHL, length);
    def out = AbsValue((difSrc / Sqrt((Sum(Power(difSrc, 2), periods) - Power(difSrc, 2)) / (periods - 2))));
    def tr = if open > close then -norm else norm;
    def outlier_tr = if tr > 0.5 then 1 else if tr < -0.5 then 1 else 0;
    def outlier = out >= max;
    def outl = if other then outlier_tr else outlier;
    plot return = outl;
}
#odma(src = close, len = 20, max = 2, swch = "Price", length = 100, other = false, ext = na, smoothing = 0) =>
script odma {
    input src = close;
    input len = 20;
    input max = 3;
    input swch = "Price";
    input length = 100;
    input other = no;
    input ext = Double.NaN;
    input smoothing = 0;
    def rolling_length;
    def swma;
    def outlier;
    def outlier_vol;
    def outlier_swch;
    def v = volume;
    outlier_vol = outlier(v, len, max, length, no);
    outlier = outlier(src, len, max, length, other);
    outlier_swch = if swch == "Price" then outlier else
                   if swch == "Volume" then outlier_vol else
                   if swch == "Price or Volume" then outlier or outlier_vol else
                   if swch == "Price and Volume" then outlier and outlier_vol else ext;
    rolling_length = if outlier_swch then 1 else 1 + nz(rolling_length[1]);
    swma = if outlier_swch then (src + src[1]) / 2 else src + nz(swma[1]);
    def result = WMA(SimpleMovingAvg(swma / rolling_length, 2), 3);
    def odma = filter(result, smoothing);
    plot return = odma;
}
#odvwap(src = close, len = 200, max = 3, swch = "Volume", length = 100, other = false, ext = na, smoothing = 0) =>
script odvwap {
    input src = close;
    input len = 30;
    input max = 3;
    input swch = "Volume";
    input length = 100;
    input other = no;
    input ext = Double.NaN;
    input smoothing = 0;
    def sumSrcVol;
    def sumVol;
    def outlier;
    def outlier_vol;
    def outlier_swch;
    def v = volume;
    def srcVol = src * v;
    def srcVol1 = src[1] * v[1];
    outlier_vol = outlier_volume(len, max, length, other);
    outlier     = outlier(src, len, max, length, other);
    outlier_swch = if swch == "Price" then outlier else
                   if swch == "Volume" then outlier_vol else
                   if swch == "Price or Volume" then outlier or outlier_vol else
                   if swch == "Price and Volume" then outlier and outlier_vol else
                   if swch == "Pivot Point" then ext else nz(outlier_swch[1]);
    sumSrcVol = if outlier_swch then (srcVol + srcVol1)/2 else srcVol + sumSrcVol[1];
    sumVol = if outlier_swch then (v + nz(v[1],v)) / 2 else v + nz(sumVol[1],v);
    def result = sumSrcVol / sumVol;
    def odvwap = filter(result, smoothing);
    plot retrun = odvwap;
}
script FindPivots {
    input dat = close; # default data or study being evaluated
    input HL  = 0;    # default high or low pivot designation, -1 low, +1 high
    input lbL  = 5;    # default Pivot Lookback Left
    input lbR  = 1;    # default Pivot Lookback Right
    ##############
    def _nan;    # used for non-number returns
    def _BN;     # the current barnumber
    def _VStop;  # confirms that the lookforward period continues the pivot trend
    def _V;      # the Value at the actual pivot point
    ##############
    _BN  = BarNumber();
    _nan = Double.NaN;
    _VStop = if !IsNaN(dat) and lbR > 0 and lbL > 0 then
                fold a = 1 to lbR + 1 with b=1 while b do
                    if HL > 0 then dat > GetValue(dat, -a) else dat < GetValue(dat, -a) else _nan;
    if (HL > 0) {
        _V = if _BN > lbL and dat == Highest(dat, lbL + 1) and _VStop
            then dat else _nan;
    } else {
        _V = if _BN > lbL and dat == Lowest(dat, lbL + 1) and _VStop
            then dat else _nan;
    }
    plot result = if !IsNaN(_V) and _VStop then _V else _nan;
}
def ph =  findpivots(high, 1, leftLenH, rightLenH);
def pl =  findpivots(low, -1, leftLenL, rightLenL);

def pivot = !isNaN(ph) or !isNaN(pl);
def ma;
switch (weight) {
case "Volume Weighting":
    ma = odvwap(src, len, max, swch, length, other, pivot, smoothing);
case "No Volume Weighting":
    ma = odma(src, len, max, swch, length, other, pivot, smoothing);
}
def maValue = ma;
plot odvwap = maValue;
odvwap.SetDefaultColor(Color.MAGENTA);

# --- END CODE
 
Last edited by a moderator:

Join useThinkScript to post your question to a community of 21,000+ developers and traders.

Similar threads

Not the exact question you're looking for?

Start a new thread and receive assistance from our community.

87k+ Posts
424 Online
Create Post

Similar threads

Similar threads

The Market Trading Game Changer

Join 2,500+ subscribers inside the useThinkScript VIP Membership Club
  • Exclusive indicators
  • Proven strategies & setups
  • Private Discord community
  • ‘Buy The Dip’ signal alerts
  • Exclusive members-only content
  • Add-ons and resources
  • 1 full year of unlimited support

Frequently Asked Questions

What is useThinkScript?

useThinkScript is the #1 community of stock market investors using indicators and other tools to power their trading strategies. Traders of all skill levels use our forums to learn about scripting and indicators, help each other, and discover new ways to gain an edge in the markets.

How do I get started?

We get it. Our forum can be intimidating, if not overwhelming. With thousands of topics, tens of thousands of posts, our community has created an incredibly deep knowledge base for stock traders. No one can ever exhaust every resource provided on our site.

If you are new, or just looking for guidance, here are some helpful links to get you started.

What are the benefits of VIP Membership?
VIP members get exclusive access to these proven and tested premium indicators: Buy the Dip, Advanced Market Moves 2.0, Take Profit, and Volatility Trading Range. In addition, VIP members get access to over 50 VIP-only custom indicators, add-ons, and strategies, private VIP-only forums, private Discord channel to discuss trades and strategies in real-time, customer support, trade alerts, and much more. Learn all about VIP membership here.
How can I access the premium indicators?
To access the premium indicators, which are plug and play ready, sign up for VIP membership here.
Back
Top