Repaints ANN Next Coming Candlestick Forecast SPX 1D For ThinkOrSwim

Repaints
Need to also convert this pinescript to thinkscript as well

https://www.tradingview.com/v/50zVVT8N/

Code:
// This source code is subject to the terms of the Mozilla Public License 2.0 at [URL]https://mozilla.org/MPL/2.0/[/URL]
// © Noldo

//@version=4
study("ANN Next Coming Candlestick Forecast SPX 1D" , overlay = true)

src = close

o = open
h = high
l = low
c = close

_indicator1 = ((o - o[1] ) / (o[1]))
_indicator2 = ((h - h[1] ) / (h[1]))
_indicator3 = ((l - l[1] ) / (l[1]))
_indicator4 = ((c - c[1] ) / (c[1]))
_indicator5 = (src - src[1]) / src[1]

// Inputs on Tangent Function :

tangentdiff(_src) => nz((_src - _src[1]) / _src[1] )


// Deep Learning Activation Function (Tanh) :

ActivationFunctionTanh(v) => (1 - exp(-2 * v))/( 1 + exp(-2 * v))


// DEEP LEARNING

// INPUTS :

input_1 = (_indicator1)
input_2 = (_indicator2)
input_3 = (_indicator3)
input_4 = (_indicator4)


// LAYERS :

// Input Layers

n_0 = ActivationFunctionTanh(input_1 + 0)
n_1 = ActivationFunctionTanh(input_2 + 0)
n_2 = ActivationFunctionTanh(input_3 + 0)
n_3 = ActivationFunctionTanh(input_4 + 0)


//


fun_open() =>

    float _output = na
 
    n_4  = ActivationFunctionTanh(0.030535   * n_0  + 5.113012  * n_1  + -26.085717  * n_2  + -5.320280   * n_3  + 7.354752 )

    n_5  = ActivationFunctionTanh(4.167948   * n_0  + 7.225875  * n_1  + -0.871215   * n_2  + -8.894535   * n_3  + -7.064751 )      

    n_6  = ActivationFunctionTanh(-0.806293  * n_0  + -0.304470 * n_1  + -3.909741   * n_2  + -5.009985   * n_3  + 5.127558 )
 
    n_7  = ActivationFunctionTanh(-29.736063 * n_0  + 28.668433 * n_1  + 0.138417    * n_2  + -57.588543  * n_3  + 2.824914 )
 
    n_8  = ActivationFunctionTanh(-0.429393  * n_0  + 0.482744  * n_1  + -0.789797   * n_2  + -2.987460   * n_3  + -4.310747 )
 
    n_9  = ActivationFunctionTanh(1.758357   * n_0  + -0.618090 * n_1  + 2.449362    * n_2  + -1.583126   * n_3  + 1.165846 )
 
    _output :=  ActivationFunctionTanh(-0.653030 * n_4  + -4.646999 * n_5  + -1.678999  * n_6  + -17.077652  * n_7  + 0.875426 * n_8 + -6.672465 * n_9 + 6.940722)
 
 
fun_high() =>

    float _output = na
 
    n_4  = ActivationFunctionTanh(10.186543  * n_0  + -30.964897 * n_1  + 21.672385  * n_2  + -40.895894  * n_3  + 7.957443 )

    n_5  = ActivationFunctionTanh(-15.252332 * n_0  + 14.845403  * n_1  + 10.621491  * n_2  + -23.817824  * n_3  + 2.947530 )      

    n_6  = ActivationFunctionTanh(-15.179010 * n_0  + -30.011878 * n_1  + 35.650459  * n_2  + -61.480486  * n_3  + 3.898503 )
 
    n_7  = ActivationFunctionTanh(35.656454  * n_0  + -11.134354 * n_1  + -28.071578 * n_2  + 2.923959    * n_3  + -1.805703 )
 
    n_8  = ActivationFunctionTanh(3.462374   * n_0  + -13.644019 * n_1  + -30.226394 * n_2  + -1.083953   * n_3  + 23.032872 )
 
    n_9  = ActivationFunctionTanh(-47.265829 * n_0  + 19.021801  * n_1  + 10.565216  * n_2  + -27.520789  * n_3  + 6.947500 )
 
    _output :=  ActivationFunctionTanh(-0.696537 * n_4  + -1.349433 * n_5  + 27.262956  * n_6  + -1.042353  * n_7  + -0.540196 * n_8 + -10.735585 * n_9 + 1.303216)


fun_low() =>

    float _output = na
 
    n_4  = ActivationFunctionTanh(4.363108   * n_0  + -18.301472 * n_1  + -15.376884  * n_2  + 21.208559  * n_3  + -0.458119 )

    n_5  = ActivationFunctionTanh(-2.651826  * n_0  + 5.205410   * n_1  + -5.920993   * n_2  + -4.847458  * n_3  + 8.315580 )      

    n_6  = ActivationFunctionTanh(13.885322  * n_0  + -5.517922  * n_1  + -15.241118  * n_2  + -8.673229  * n_3  + -4.954015 )
 
    n_7  = ActivationFunctionTanh(10.490466  * n_0  + -25.201536 * n_1  + 10.262121   * n_2  + -1.116144  * n_3  + -5.254103 )
 
    n_8  = ActivationFunctionTanh(-14.687736 * n_0  +   9.030202 * n_1  + -17.332462  * n_2  + 8.068070   * n_3  + 0.755134 )
 
    n_9  = ActivationFunctionTanh( 0.895168  * n_0  +  -1.737740 * n_1  + 4.899143    * n_2  + -7.718495  * n_3  + 5.493688 )
 
    _output :=  ActivationFunctionTanh(4.132907 * n_4  + -17.501595 * n_5  + 4.617443  * n_6  + -28.476857  * n_7  + -5.888234 * n_8 + -24.434500 * n_9 + 41.318760)


fun_close() =>

    float _output = na
 
    n_4  = ActivationFunctionTanh(22.427157  * n_0  + -26.691701 * n_1  + 4.937141    * n_2  + 9.034960    * n_3  + -10.692978 )

    n_5  = ActivationFunctionTanh(-38.288087 * n_0  + 10.050028  * n_1  + -44.706345  * n_2  + -17.816354  * n_3  + 30.566226 )      

    n_6  = ActivationFunctionTanh(-33.995444 * n_0  + 14.501766  * n_1  + -43.286508  * n_2  + -13.387415  * n_3  + 24.708075 )
 
    n_7  = ActivationFunctionTanh(-14.392948 * n_0  + 28.483095  * n_1  + -22.979338  * n_2  + -7.658263   * n_3  + -5.650564  )
 
    n_8  = ActivationFunctionTanh(28.837901  * n_0  + -26.354494 * n_1  + 0.520683    * n_2  + 25.004913   * n_3  + -17.883236 )
 
    n_9  = ActivationFunctionTanh(-4.811354  * n_0  + -4.036420  * n_1  + -8.332775   * n_2  + -1.157164   * n_3  + 0.466793 )
 
    _output :=  ActivationFunctionTanh(-22.053311 * n_4  + 3.652552 * n_5  + -4.390465  * n_6  +  2.103060  * n_7  + 20.027285 * n_8 + 11.510129 * n_9 + -0.415015)


// Current Open Values

_chg_open = tangentdiff(o) * 100

_seed_open = (fun_open() - _chg_open) / 100

f_open =  o * (1 - _seed_open)

// Current High Values

_chg_high = tangentdiff(h) * 100

_seed_high = (fun_high() - _chg_high) / 100

f_high =  h * (1 - _seed_high)

// Current Low Values

_chg_low = tangentdiff(l) * 100

_seed_low = (fun_low() - _chg_low) / 100

f_low =  l * (1 - _seed_low)

// Current Close Values

_chg_c = tangentdiff(c) * 100

_seed_c = (fun_close() - _chg_c) / 100

f_close=  c * (1 - _seed_c)


plotcandle(f_close,f_high,f_low,f_open,color=f_close>f_close[1]?color.teal:color.maroon,wickcolor=#5d606b )
find below. (May repaint - pls test and confirm)

CSS:
#// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
#// © Noldo
#study("ANN Next Coming Candlestick Forecast SPX 1D" , overlay = true)
# Converted by Sam4Cok@Samer800    - 03/2023

declare lower;

def na = Double.NaN;
def o = open;
def h = high;
def l = low;
def c = close;

def _indicator1 = ((o - o[1] ) / (o[1]));
def _indicator2 = ((h - h[1] ) / (h[1]));
def _indicator3 = ((l - l[1] ) / (l[1]));
def _indicator4 = ((c - c[1] ) / (c[1]));
#def _indicator5 = (source - source[1]) / source[1];

#// Inputs on Tangent Function :
#tangentdiff(_src) =>
script tangentdiff {
    input _src = close;
    def tangentdiff = (_src - _src[1]) / _src[1];
    plot out = tangentdiff;
}
#// Deep Learning Activation Function (Tanh) :
script Tanh {
    input v = 0;
    def Tanh = (1 - Exp(-2 * v)) / ( 1 + Exp(-2 * v));
    plot out = Tanh;
}
#// DEEP LEARNING
#// INPUTS :
def input_o = (_indicator1);
def input_h = (_indicator2);
def input_l = (_indicator3);
def input_c = (_indicator4);
#// LAYERS :
#// Input Layers

def n_0 = Tanh(input_o + 0);
def n_1 = Tanh(input_h + 0);
def n_2 = Tanh(input_l + 0);
def n_3 = Tanh(input_c + 0);

def fun_open;
def o_4  = Tanh(0.030535   * n_0  + 5.113012  * n_1  + -26.085717  * n_2  + -5.320280   * n_3  + 7.354752 );
def o_5  = Tanh(4.167948   * n_0  + 7.225875  * n_1  + -0.871215   * n_2  + -8.894535   * n_3  + -7.064751 );
def o_6  = Tanh(-0.806293  * n_0  + -0.304470 * n_1  + -3.909741   * n_2  + -5.009985   * n_3  + 5.127558 );
def o_7  = Tanh(-29.736063 * n_0  + 28.668433 * n_1  + 0.138417    * n_2  + -57.588543  * n_3  + 2.824914 );
def o_8  = Tanh(-0.429393  * n_0  + 0.482744  * n_1  + -0.789797   * n_2  + -2.987460   * n_3  + -4.310747 );
def o_9  = Tanh(1.758357   * n_0  + -0.618090 * n_1  + 2.449362    * n_2  + -1.583126   * n_3  + 1.165846 );
fun_open =  Tanh(-0.653030 * o_4  + -4.646999 * o_5  + -1.678999  * o_6  + -17.077652  * o_7  + 0.875426 * o_8 + -6.672465 * o_9 + 6.940722);

def fun_high;
def h_4  = Tanh(10.186543  * n_0  + -30.964897 * n_1  + 21.672385  * n_2  + -40.895894  * n_3  + 7.957443 );
def h_5  = Tanh(-15.252332 * n_0  + 14.845403  * n_1  + 10.621491  * n_2  + -23.817824  * n_3  + 2.947530 );
def h_6  = Tanh(-15.179010 * n_0  + -30.011878 * n_1  + 35.650459  * n_2  + -61.480486  * n_3  + 3.898503 );
def h_7  = Tanh(35.656454  * n_0  + -11.134354 * n_1  + -28.071578 * n_2  + 2.923959    * n_3  + -1.805703 );
def h_8  = Tanh(3.462374   * n_0  + -13.644019 * n_1  + -30.226394 * n_2  + -1.083953   * n_3  + 23.032872 );
def h_9  = Tanh(-47.265829 * n_0  + 19.021801  * n_1  + 10.565216  * n_2  + -27.520789  * n_3  + 6.947500 );
fun_high = Tanh(-0.696537 * h_4  + -1.349433 * h_5  + 27.262956  * h_6  + -1.042353  * h_7  + -0.540196 * h_8 + -10.735585 * h_9 + 1.303216);

def fun_low;
def l_4  = Tanh(4.363108   * n_0  + -18.301472 * n_1  + -15.376884  * n_2  + 21.208559  * n_3  + -0.458119 );
def l_5  = Tanh(-2.651826  * n_0  + 5.205410   * n_1  + -5.920993   * n_2  + -4.847458  * n_3  + 8.315580 );
def l_6  = Tanh(13.885322  * n_0  + -5.517922  * n_1  + -15.241118  * n_2  + -8.673229  * n_3  + -4.954015 );
def l_7  = Tanh(10.490466  * n_0  + -25.201536 * n_1  + 10.262121   * n_2  + -1.116144  * n_3  + -5.254103 );
def l_8  = Tanh(-14.687736 * n_0  +   9.030202 * n_1  + -17.332462  * n_2  + 8.068070   * n_3  + 0.755134 );
def l_9  = Tanh( 0.895168  * n_0  +  -1.737740 * n_1  + 4.899143    * n_2  + -7.718495  * n_3  + 5.493688 );
fun_low =  Tanh(4.132907 * l_4  + -17.501595 * l_5  + 4.617443  * l_6  + -28.476857  * l_7  + -5.888234 * l_8 + -24.434500 * l_9 + 41.318760);

def fun_close;
def c_4  = Tanh(22.427157  * n_0  + -26.691701 * n_1  + 4.937141    * n_2  + 9.034960    * n_3  + -10.692978 );
def c_5  = Tanh(-38.288087 * n_0  + 10.050028  * n_1  + -44.706345  * n_2  + -17.816354  * n_3  + 30.566226 );
def c_6  = Tanh(-33.995444 * n_0  + 14.501766  * n_1  + -43.286508  * n_2  + -13.387415  * n_3  + 24.708075 );
def c_7  = Tanh(-14.392948 * n_0  + 28.483095  * n_1  + -22.979338  * n_2  + -7.658263   * n_3  + -5.650564  );
def c_8  = Tanh(28.837901  * n_0  + -26.354494 * n_1  + 0.520683    * n_2  + 25.004913   * n_3  + -17.883236 );
def c_9  = Tanh(-4.811354  * n_0  + -4.036420  * n_1  + -8.332775   * n_2  + -1.157164   * n_3  + 0.466793 );
fun_close = Tanh(-22.053311 * c_4  + 3.652552 * c_5  + -4.390465  * c_6  +  2.103060  * c_7  + 20.027285 * c_8 + 11.510129 * c_9 + -0.415015);

#// Current Open Values
def _chg_open = tangentdiff(o) * 100;
def _seed_open = (fun_open - _chg_open) / 100;
def f_open =  o * (1 - _seed_open);
#// Current High Values
def _chg_high = tangentdiff(h) * 100;
def _seed_high = (fun_high - _chg_high) / 100;
def f_high =  h * (1 - _seed_high);
#// Current Low Values
def _chg_low = tangentdiff(l) * 100;
def _seed_low = (fun_low - _chg_low) / 100;
def f_low =  l * (1 - _seed_low);
#// Current Close Values
def _chg_c = tangentdiff(c) * 100;
def _seed_c = (fun_close - _chg_c) / 100;
def f_close =  c * (1 - _seed_c);

def up = f_close > f_close[1];

# Plot the new Chart
AddChart(high = if up then f_high else na , low = f_low , open = f_open,  close = f_close,
         type = ChartType.CANDLE, growcolor =  CreateColor(0,137,123));

AddChart(high = if up then na else f_high , low = f_low , open = f_open,  close = f_close,
         type = ChartType.CANDLE, growcolor =  CreateColor(136,14,79));


plot upperBand = f_open + ATR(LENGTH=1);
plot lowerBand = f_low - ATR(LENGTH=1);

upperBand.AssignValueColor(if up then CreateColor(0,137,123) else CreateColor(136,14,79));
lowerBand.AssignValueColor(if up then CreateColor(0,137,123) else CreateColor(136,14,79));
upperBand.SetPaintingStrategy(PaintingStrategy.POINTS);
lowerBand.SetPaintingStrategy(PaintingStrategy.POINTS);

#-- END of CODE

and this Upper plot to forecast next candle

CSS:
#// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
#// © Noldo
#study("ANN Next Coming Candlestick Forecast SPX 1D" , overlay = true)
# Converted by Sam4Cok@Samer800    - 03/2023

input UseChartTimeframe = yes;
input Resolution    = AggregationPeriod.FIVE_MIN;    # 'Resolution'
input NonRepainting    = no;     # 'Non-Repainting'

def na = Double.NaN;
def agg = GetAggregationPeriod();
def Rep = if NonRepainting then 1 else 0;
def last = IsNaN(close[-Rep]);# and isNaN(close[-2]);
def TF = if UseChartTimeframe then agg else Resolution;
def h = if UseChartTimeframe then high[Rep] else high(Period = TF)[Rep];
def l = if UseChartTimeframe then low[Rep] else low(Period = TF)[Rep];
def c = if UseChartTimeframe then close[Rep] else close(Period = TF)[Rep];
def o = if UseChartTimeframe then open[Rep] else open(Period = TF)[Rep];

def _indicator1 = ((o - o[1] ) / (o[1]));
def _indicator2 = ((h - h[1] ) / (h[1]));
def _indicator3 = ((l - l[1] ) / (l[1]));
def _indicator4 = ((c - c[1] ) / (c[1]));
#def _indicator5 = (source - source[1]) / source[1];

#// Inputs on Tangent Function :
#tangentdiff(_src) =>
script tangentdiff {
    input _src = close;
    def tangentdiff = (_src - _src[1]) / _src[1];
    plot out = tangentdiff;
}
#// Deep Learning Activation Function (Tanh) :
script Tanh {
    input v = 0;
    def Tanh = (1 - Exp(-2 * v)) / ( 1 + Exp(-2 * v));
    plot out = Tanh;
}
#// DEEP LEARNING
#// INPUTS :
def input_o = (_indicator1);
def input_h = (_indicator2);
def input_l = (_indicator3);
def input_c = (_indicator4);
#// LAYERS :
#// Input Layers

def n_0 = Tanh(input_o + 0);
def n_1 = Tanh(input_h + 0);
def n_2 = Tanh(input_l + 0);
def n_3 = Tanh(input_c + 0);

def fun_open;
def o_4  = Tanh(0.030535   * n_0  + 5.113012  * n_1  + -26.085717  * n_2  + -5.320280   * n_3  + 7.354752 );
def o_5  = Tanh(4.167948   * n_0  + 7.225875  * n_1  + -0.871215   * n_2  + -8.894535   * n_3  + -7.064751 );
def o_6  = Tanh(-0.806293  * n_0  + -0.304470 * n_1  + -3.909741   * n_2  + -5.009985   * n_3  + 5.127558 );
def o_7  = Tanh(-29.736063 * n_0  + 28.668433 * n_1  + 0.138417    * n_2  + -57.588543  * n_3  + 2.824914 );
def o_8  = Tanh(-0.429393  * n_0  + 0.482744  * n_1  + -0.789797   * n_2  + -2.987460   * n_3  + -4.310747 );
def o_9  = Tanh(1.758357   * n_0  + -0.618090 * n_1  + 2.449362    * n_2  + -1.583126   * n_3  + 1.165846 );
fun_open =  Tanh(-0.653030 * o_4  + -4.646999 * o_5  + -1.678999  * o_6  + -17.077652  * o_7  + 0.875426 * o_8 + -6.672465 * o_9 + 6.940722);

def fun_high;
def h_4  = Tanh(10.186543  * n_0  + -30.964897 * n_1  + 21.672385  * n_2  + -40.895894  * n_3  + 7.957443 );
def h_5  = Tanh(-15.252332 * n_0  + 14.845403  * n_1  + 10.621491  * n_2  + -23.817824  * n_3  + 2.947530 );
def h_6  = Tanh(-15.179010 * n_0  + -30.011878 * n_1  + 35.650459  * n_2  + -61.480486  * n_3  + 3.898503 );
def h_7  = Tanh(35.656454  * n_0  + -11.134354 * n_1  + -28.071578 * n_2  + 2.923959    * n_3  + -1.805703 );
def h_8  = Tanh(3.462374   * n_0  + -13.644019 * n_1  + -30.226394 * n_2  + -1.083953   * n_3  + 23.032872 );
def h_9  = Tanh(-47.265829 * n_0  + 19.021801  * n_1  + 10.565216  * n_2  + -27.520789  * n_3  + 6.947500 );
fun_high = Tanh(-0.696537 * h_4  + -1.349433 * h_5  + 27.262956  * h_6  + -1.042353  * h_7  + -0.540196 * h_8 + -10.735585 * h_9 + 1.303216);

def fun_low;
def l_4  = Tanh(4.363108   * n_0  + -18.301472 * n_1  + -15.376884  * n_2  + 21.208559  * n_3  + -0.458119 );
def l_5  = Tanh(-2.651826  * n_0  + 5.205410   * n_1  + -5.920993   * n_2  + -4.847458  * n_3  + 8.315580 );
def l_6  = Tanh(13.885322  * n_0  + -5.517922  * n_1  + -15.241118  * n_2  + -8.673229  * n_3  + -4.954015 );
def l_7  = Tanh(10.490466  * n_0  + -25.201536 * n_1  + 10.262121   * n_2  + -1.116144  * n_3  + -5.254103 );
def l_8  = Tanh(-14.687736 * n_0  +   9.030202 * n_1  + -17.332462  * n_2  + 8.068070   * n_3  + 0.755134 );
def l_9  = Tanh( 0.895168  * n_0  +  -1.737740 * n_1  + 4.899143    * n_2  + -7.718495  * n_3  + 5.493688 );
fun_low =  Tanh(4.132907 * l_4  + -17.501595 * l_5  + 4.617443  * l_6  + -28.476857  * l_7  + -5.888234 * l_8 + -24.434500 * l_9 + 41.318760);

def fun_close;
def c_4  = Tanh(22.427157  * n_0  + -26.691701 * n_1  + 4.937141    * n_2  + 9.034960    * n_3  + -10.692978 );
def c_5  = Tanh(-38.288087 * n_0  + 10.050028  * n_1  + -44.706345  * n_2  + -17.816354  * n_3  + 30.566226 );
def c_6  = Tanh(-33.995444 * n_0  + 14.501766  * n_1  + -43.286508  * n_2  + -13.387415  * n_3  + 24.708075 );
def c_7  = Tanh(-14.392948 * n_0  + 28.483095  * n_1  + -22.979338  * n_2  + -7.658263   * n_3  + -5.650564  );
def c_8  = Tanh(28.837901  * n_0  + -26.354494 * n_1  + 0.520683    * n_2  + 25.004913   * n_3  + -17.883236 );
def c_9  = Tanh(-4.811354  * n_0  + -4.036420  * n_1  + -8.332775   * n_2  + -1.157164   * n_3  + 0.466793 );
fun_close = Tanh(-22.053311 * c_4  + 3.652552 * c_5  + -4.390465  * c_6  +  2.103060  * c_7  + 20.027285 * c_8 + 11.510129 * c_9 + -0.415015);

#// Current Open Values
def _chg_open = tangentdiff(o) * 100;
def _seed_open = (fun_open - _chg_open) / 100;
def f_open =  o * (1 - _seed_open);
#// Current High Values
def _chg_high = tangentdiff(h) * 100;
def _seed_high = (fun_high - _chg_high) / 100;
def f_high =  h * (1 - _seed_high);
#// Current Low Values
def _chg_low = tangentdiff(l) * 100;
def _seed_low = (fun_low - _chg_low) / 100;
def f_low =  l * (1 - _seed_low);
#// Current Close Values
def _chg_c = tangentdiff(c) * 100;
def _seed_c = (fun_close - _chg_c) / 100;
def f_close =  c * (1 - _seed_c);

def up = f_close > f_close[1];

plot Predc = if last and last[Rep + 1] then ohlc4[2] else na;
Predc.AssignValueColor(if up[2] > 0 then CreateColor(0,137,123) else CreateColor(136,14,79));
Predc.SetPaintingStrategy(PaintingStrategy.POINTS);
Predc.SetLineWeight(4);



#-- END of CODE
 
Last edited:

Join useThinkScript to post your question to a community of 21,000+ developers and traders.

Not the exact question you're looking for?

Start a new thread and receive assistance from our community.

87k+ Posts
464 Online
Create Post

The Market Trading Game Changer

Join 2,500+ subscribers inside the useThinkScript VIP Membership Club
  • Exclusive indicators
  • Proven strategies & setups
  • Private Discord community
  • ‘Buy The Dip’ signal alerts
  • Exclusive members-only content
  • Add-ons and resources
  • 1 full year of unlimited support

Frequently Asked Questions

What is useThinkScript?

useThinkScript is the #1 community of stock market investors using indicators and other tools to power their trading strategies. Traders of all skill levels use our forums to learn about scripting and indicators, help each other, and discover new ways to gain an edge in the markets.

How do I get started?

We get it. Our forum can be intimidating, if not overwhelming. With thousands of topics, tens of thousands of posts, our community has created an incredibly deep knowledge base for stock traders. No one can ever exhaust every resource provided on our site.

If you are new, or just looking for guidance, here are some helpful links to get you started.

What are the benefits of VIP Membership?
VIP members get exclusive access to these proven and tested premium indicators: Buy the Dip, Advanced Market Moves 2.0, Take Profit, and Volatility Trading Range. In addition, VIP members get access to over 50 VIP-only custom indicators, add-ons, and strategies, private VIP-only forums, private Discord channel to discuss trades and strategies in real-time, customer support, trade alerts, and much more. Learn all about VIP membership here.
How can I access the premium indicators?
To access the premium indicators, which are plug and play ready, sign up for VIP membership here.
Back
Top